Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges
Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 16-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear model describing equilibrium of a cracked plate with a volume rigid inclusion is studied. It is assumed that under the action of certain given loads, plates have deformations with a certain predetermined configuration of edges near the crack. On the crack curve we impose a nonlinear boundary condition as a system of inequalities and an equality describing the nonpenetration of the opposite crack faces. For a family of variational problems, we study the dependence of their solutions on the location of the inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on a suitable Sobolev space. For this problem, the location parameter of the inclusion serves as a control parameter. We prove continuous dependence of the solutions on the location parameter and the existence of a solution to the optimal control problem.
Keywords: variational inequality, crack, nonpenetration conditions, optimal control problem, rigid inclusion.
@article{SVFU_2021_28_2_a1,
     author = {N. P. Lazarev and E. F. Sharin and G. M. Semenova},
     title = {Optimal location of a rigid inclusion for an equilibrium problem describing {Kirchhoff{\textendash}Love} plate with nonpenetration conditions for known configurations of plate edges},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {16--33},
     year = {2021},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a1/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - E. F. Sharin
AU  - G. M. Semenova
TI  - Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 16
EP  - 33
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a1/
LA  - ru
ID  - SVFU_2021_28_2_a1
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A E. F. Sharin
%A G. M. Semenova
%T Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges
%J Matematičeskie zametki SVFU
%D 2021
%P 16-33
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a1/
%G ru
%F SVFU_2021_28_2_a1
N. P. Lazarev; E. F. Sharin; G. M. Semenova. Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges. Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 16-33. http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a1/