Boundary value problems for third-order pseudoelliptic equations with degeneration
Matematičeskie zametki SVFU, Tome 28 (2021) no. 1, pp. 27-36
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the solvability of boundary value problems in cylindrical domains $Q=\Omega\times(0,T)$, $\Omega\subset\mathbb{R}^n$, $0, for differential equations $$ h(t)\frac{\partial^{2p+1}u}{\partial t^{2p+1}}+(-1)^{p+1}\Delta u+c(x,t)u=f(x,t), $$ where $p$ is a non-negative integer, $h(t)$ is continuous on the segment $[0, T]$ a function such that $\varphi(t)>0$ for $t\in(0,T)$, $\varphi(0)\ge0$, $\varphi(T)\ge0$, and $\Delta$ is the Laplace operator in spatial variables $x_1,\dots, x_n$. The main feature of the problems under study is that, despite the degeneration, the boundary manifolds are not exempt to the bearing boundary conditions. We proved the existence and uniqueness theorems of the regular solutions, those having all Sobolev generalized derivatives included in the equation. Moreover, we describe some possible enhancements and generalizations of the obtained results.
Mots-clés :
quasi-parabolic equations, existence
Keywords: degeneration, boundary value problem, regular solution, uniqueness.
Keywords: degeneration, boundary value problem, regular solution, uniqueness.
@article{SVFU_2021_28_1_a2,
author = {A. I. Kozhanov},
title = {Boundary value problems for third-order pseudoelliptic equations with degeneration},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {27--36},
year = {2021},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/}
}
A. I. Kozhanov. Boundary value problems for third-order pseudoelliptic equations with degeneration. Matematičeskie zametki SVFU, Tome 28 (2021) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/