Boundary value problems for third-order pseudoelliptic equations with degeneration
Matematičeskie zametki SVFU, Tome 28 (2021) no. 1, pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the solvability of boundary value problems in cylindrical domains $Q=\Omega\times(0,T)$, $\Omega\subset\mathbb{R}^n$, $0, for differential equations $$ h(t)\frac{\partial^{2p+1}u}{\partial t^{2p+1}}+(-1)^{p+1}\Delta u+c(x,t)u=f(x,t), $$ where $p$ is a non-negative integer, $h(t)$ is continuous on the segment $[0, T]$ a function such that $\varphi(t)>0$ for $t\in(0,T)$, $\varphi(0)\ge0$, $\varphi(T)\ge0$, and $\Delta$ is the Laplace operator in spatial variables $x_1,\dots, x_n$. The main feature of the problems under study is that, despite the degeneration, the boundary manifolds are not exempt to the bearing boundary conditions. We proved the existence and uniqueness theorems of the regular solutions, those having all Sobolev generalized derivatives included in the equation. Moreover, we describe some possible enhancements and generalizations of the obtained results.
Mots-clés : quasi-parabolic equations, existence
Keywords: degeneration, boundary value problem, regular solution, uniqueness.
@article{SVFU_2021_28_1_a2,
     author = {A. I. Kozhanov},
     title = {Boundary value problems for third-order pseudoelliptic equations with degeneration},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {27--36},
     year = {2021},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Boundary value problems for third-order pseudoelliptic equations with degeneration
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 27
EP  - 36
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/
LA  - ru
ID  - SVFU_2021_28_1_a2
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Boundary value problems for third-order pseudoelliptic equations with degeneration
%J Matematičeskie zametki SVFU
%D 2021
%P 27-36
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/
%G ru
%F SVFU_2021_28_1_a2
A. I. Kozhanov. Boundary value problems for third-order pseudoelliptic equations with degeneration. Matematičeskie zametki SVFU, Tome 28 (2021) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/SVFU_2021_28_1_a2/