Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations
Matematičeskie zametki SVFU, Tome 27 (2020) no. 4, pp. 30-42
Cet article a éte moissonné depuis la source Math-Net.Ru
We study solvability of a nonlocal problem with integral conditions for Sobolev-type differential equations of the third order. Using spectral decompositions, we prove existence and uniqueness theorems for solutions with all generalized S. L. Sobolev derivatives entering the equation.
Keywords:
Sobolev-type differential equation, problem with integral conditions, regular solution, uniqueness.
Mots-clés : existence
Mots-clés : existence
@article{SVFU_2020_27_4_a2,
author = {A. I. Kozhanov and A. V. Dyuzheva},
title = {Solvability of a nonlocal problem with integral conditions for third-order {Sobolev-type} equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {30--42},
year = {2020},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2020_27_4_a2/}
}
TY - JOUR AU - A. I. Kozhanov AU - A. V. Dyuzheva TI - Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations JO - Matematičeskie zametki SVFU PY - 2020 SP - 30 EP - 42 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/SVFU_2020_27_4_a2/ LA - ru ID - SVFU_2020_27_4_a2 ER -
A. I. Kozhanov; A. V. Dyuzheva. Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations. Matematičeskie zametki SVFU, Tome 27 (2020) no. 4, pp. 30-42. http://geodesic.mathdoc.fr/item/SVFU_2020_27_4_a2/