Boundary value problems for third-order pseudoelliptic equations with degeneration
Matematičeskie zametki SVFU, Tome 27 (2020) no. 3, pp. 16-26
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the solvability in Sobolev spaces of the Dirichlet problem and other elliptic problems for the differential equations \begin{equation} u_{tt}+\alpha(t)\frac{\partial}{\partial t}(\Delta u)+Bu=f(x,t)\tag{*} \end{equation} $x\in\Omega\subset\mathbb{R}^n$, $t\in(0,T),$ where $\Delta$ if the Laplace operator acting in the variables $x_1,\dots, x_n$ and $B$ is a second-order elliptic operator acting in the same variables $x_1,\dots, x_n$. A feature of the equations ($\ast$) is that the sign of the function is not fixed in them. Existence and uniqueness theorems for regular solutions (having all generalized Sobolev's derivatives in the equation) are proved for the problems under study.
Keywords:
third-order differential equation, degeneration, elliptic boundary value problem, regular solution, uniqueness.
Mots-clés : existence
Mots-clés : existence
@article{SVFU_2020_27_3_a1,
author = {A. I. Kozhanov},
title = {Boundary value problems for third-order pseudoelliptic equations with degeneration},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {16--26},
year = {2020},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2020_27_3_a1/}
}
A. I. Kozhanov. Boundary value problems for third-order pseudoelliptic equations with degeneration. Matematičeskie zametki SVFU, Tome 27 (2020) no. 3, pp. 16-26. http://geodesic.mathdoc.fr/item/SVFU_2020_27_3_a1/