$\varepsilon$-retracts, $Q$-manifolds, and fixed points
Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 90-97
Cet article a éte moissonné depuis la source Math-Net.Ru
A generalization of one of the Noguchi fixed point theorems is presented. We prove that there exists a compact noncollapsible acyclic $Q$-manifold with the fixed point property. A topological space with the fixed point $\sigma$-property is introduced and studied and an example of a noncompact set in $R^2$ with the fixed point property is given.
Keywords:
$\varepsilon$-retract, $Q$-manifold, fixed point.
@article{SVFU_2019_26_3_a6,
author = {P. V. Chernikov},
title = {$\varepsilon$-retracts, $Q$-manifolds, and fixed points},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {90--97},
year = {2019},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/}
}
P. V. Chernikov. $\varepsilon$-retracts, $Q$-manifolds, and fixed points. Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 90-97. http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/