$\varepsilon$-retracts, $Q$-manifolds, and fixed points
Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 90-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of one of the Noguchi fixed point theorems is presented. We prove that there exists a compact noncollapsible acyclic $Q$-manifold with the fixed point property. A topological space with the fixed point $\sigma$-property is introduced and studied and an example of a noncompact set in $R^2$ with the fixed point property is given.
Keywords: $\varepsilon$-retract, $Q$-manifold, fixed point.
@article{SVFU_2019_26_3_a6,
     author = {P. V. Chernikov},
     title = {$\varepsilon$-retracts, $Q$-manifolds, and fixed points},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {90--97},
     year = {2019},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/}
}
TY  - JOUR
AU  - P. V. Chernikov
TI  - $\varepsilon$-retracts, $Q$-manifolds, and fixed points
JO  - Matematičeskie zametki SVFU
PY  - 2019
SP  - 90
EP  - 97
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/
LA  - ru
ID  - SVFU_2019_26_3_a6
ER  - 
%0 Journal Article
%A P. V. Chernikov
%T $\varepsilon$-retracts, $Q$-manifolds, and fixed points
%J Matematičeskie zametki SVFU
%D 2019
%P 90-97
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/
%G ru
%F SVFU_2019_26_3_a6
P. V. Chernikov. $\varepsilon$-retracts, $Q$-manifolds, and fixed points. Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 90-97. http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a6/