On dimension of the space of Killing fields on $k$-symmetric Lorentzian manifolds
Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 47-56
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the Killing equation on $k$-symmetric Lorentzian manifolds. Solutions of this equation form a Lie algebra called the algebra of Killing fields. Our consideration is focused primarily on the dimension of the Lie algebra of Killing fields. The Lorentzian manifolds we consider in this article are the generalized Cahen–Wallach spaces, which are convinient to use because of the coordinate system they have. Using these coordinates, we describe the general solution of the Killing equation on locally indecomposable 2-symmetric Lorentzian manifolds, which are generalized Cahen–Wallach spaces, as was proved by A. S. Galaev and D. V. Alekseevsky. Finally, we give an explicit description of all possible dimensions of the algebra of Killing fields on 2-symmetric Lorentzian manifolds of small dimensions.
Keywords:
Killing vector fields, generalized Cahen–Wallach spaces, $k$-symmetric manifolds, Lorentzian geometry.
@article{SVFU_2019_26_3_a3,
author = {D. N. Oskorbin and E. D. Rodionov and I. V. Ernst},
title = {On dimension of the space of {Killing} fields on $k$-symmetric {Lorentzian} manifolds},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {47--56},
year = {2019},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a3/}
}
TY - JOUR AU - D. N. Oskorbin AU - E. D. Rodionov AU - I. V. Ernst TI - On dimension of the space of Killing fields on $k$-symmetric Lorentzian manifolds JO - Matematičeskie zametki SVFU PY - 2019 SP - 47 EP - 56 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a3/ LA - ru ID - SVFU_2019_26_3_a3 ER -
D. N. Oskorbin; E. D. Rodionov; I. V. Ernst. On dimension of the space of Killing fields on $k$-symmetric Lorentzian manifolds. Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 47-56. http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a3/