Deconvolution problem for indicators of segments
Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 1-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu_1,\dots,\mu_n$ be a family of compactly supported distributions on real axis. Reconstruction of a function (distribution) $f$ by given convolutions $f\ast\mu_1,\dots,f\ast\mu_n$ is called deconvolution. We consider the deconvolution problem for $n=2$ and $\mu_j=\chi_{r_j},$ $j=1,2,$ where $\chi_{r_j}$ is the indicator of segment $[-r_j, r_j].$ This problem is correctly settled only under the condition of incommensurability of numbers $r_1$and $r_2$. The main result of the article gives an inversion formula for the operator $f\rightarrow(f\ast\chi_{r_1},f\ast\chi_{r_2})$ in the indicated case.
Mots-clés : convolution equations, inversion formulas
Keywords: two-radii theorem, compactly supported distributions.
@article{SVFU_2019_26_3_a0,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Deconvolution problem for indicators of segments},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {1--14},
     year = {2019},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a0/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Deconvolution problem for indicators of segments
JO  - Matematičeskie zametki SVFU
PY  - 2019
SP  - 1
EP  - 14
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a0/
LA  - ru
ID  - SVFU_2019_26_3_a0
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Deconvolution problem for indicators of segments
%J Matematičeskie zametki SVFU
%D 2019
%P 1-14
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a0/
%G ru
%F SVFU_2019_26_3_a0
N. P. Volchkova; Vit. V. Volchkov. Deconvolution problem for indicators of segments. Matematičeskie zametki SVFU, Tome 26 (2019) no. 3, pp. 1-14. http://geodesic.mathdoc.fr/item/SVFU_2019_26_3_a0/