Properties of $(0,1)$-matrices of order $n$ having maximal determinant
Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 109-115
Cet article a éte moissonné depuis la source Math-Net.Ru
We give some necessary conditions for the maximality of $(0, 1)$-determinant. Let $\mathbf{M}$ be a nondegenerate $(0,1)$-matrix of order $n$. Denote by $\mathbf{A}$ the matrix of order $n+1$ which is obtained from $\mathbf{M}$ by adding the $(n+1)$th row $(0,0,\dots,0,1)$ and the $(n+1)$th column consisting of 1's. We prove that if $\mathbf{A}^{-1}=(l_{i,j})$ then for all $i=1,\dots,n$ we have $\sum\limits^{n+1}_{j=1}|l_{I,j}|\ge2$. Moreover, if $|\det(\mathbf{M})|$ is equal to the maximal value of a $(0,1)$-determinant of order $n$, then $\sum\limits^{n+1}_{j=1}|l_{I,j}|=2$ for all $i=1,\dots,n$.
Keywords:
$(0,1)$-matrix with the maximal determinant, cube, axial diameter.
Mots-clés : simplex
Mots-clés : simplex
@article{SVFU_2019_26_2_a8,
author = {M. Nevskii and A. Ukhalov},
title = {Properties of $(0,1)$-matrices of order $n$ having maximal determinant},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {109--115},
year = {2019},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a8/}
}
M. Nevskii; A. Ukhalov. Properties of $(0,1)$-matrices of order $n$ having maximal determinant. Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 109-115. http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a8/