On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I
Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 3-16
Cet article a éte moissonné depuis la source Math-Net.Ru
This article focuses on differential geometry of $\rho$-dimentional complexes of $C^\rho$ $m$-dimensional planes in projective space $P^n$ that contains a finite number of developable surfaces. In this paper, we obtain a necessary condition under which complex $C^\rho$ contains a finite number of developable surfaces. We study the structure of $\rho$-dimensional complexes $C^\rho$ for which all developable surfaces belonging to the complex $C^\rho$ have one common characteristic $(m+1)$-dimensional plane tangent along the $m$-dimensional developable surface generator. Such complexes are denoted by $C^\rho(1)$. Also we determine the image of complexes $C^\rho(1)$ on $(m+1)(n-m)$-dimensional algebraic manifold $\Omega(m,n)$ of space $P^n$, where $N=\binom{m+1}{n+1}-1$ is the image of manifold $G(m,n)$ of $m$-dimensional planes in projective space $P^n$ under the Grassmann mapping.
Keywords:
Grassmann manifold, complexes of multidimensional planes, Segre manifold.
@article{SVFU_2019_26_2_a0,
author = {I. V. Bubyakin},
title = {On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable {surfaces.~I}},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {3--16},
year = {2019},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/}
}
TY - JOUR AU - I. V. Bubyakin TI - On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I JO - Matematičeskie zametki SVFU PY - 2019 SP - 3 EP - 16 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/ LA - ru ID - SVFU_2019_26_2_a0 ER -
%0 Journal Article %A I. V. Bubyakin %T On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I %J Matematičeskie zametki SVFU %D 2019 %P 3-16 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/ %G ru %F SVFU_2019_26_2_a0
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I. Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/