On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I
Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article focuses on differential geometry of $\rho$-dimentional complexes of $C^\rho$ $m$-dimensional planes in projective space $P^n$ that contains a finite number of developable surfaces. In this paper, we obtain a necessary condition under which complex $C^\rho$ contains a finite number of developable surfaces. We study the structure of $\rho$-dimensional complexes $C^\rho$ for which all developable surfaces belonging to the complex $C^\rho$ have one common characteristic $(m+1)$-dimensional plane tangent along the $m$-dimensional developable surface generator. Such complexes are denoted by $C^\rho(1)$. Also we determine the image of complexes $C^\rho(1)$ on $(m+1)(n-m)$-dimensional algebraic manifold $\Omega(m,n)$ of space $P^n$, where $N=\binom{m+1}{n+1}-1$ is the image of manifold $G(m,n)$ of $m$-dimensional planes in projective space $P^n$ under the Grassmann mapping.
Keywords: Grassmann manifold, complexes of multidimensional planes, Segre manifold.
@article{SVFU_2019_26_2_a0,
     author = {I. V. Bubyakin},
     title = {On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable {surfaces.~I}},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--16},
     year = {2019},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I
JO  - Matematičeskie zametki SVFU
PY  - 2019
SP  - 3
EP  - 16
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/
LA  - ru
ID  - SVFU_2019_26_2_a0
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I
%J Matematičeskie zametki SVFU
%D 2019
%P 3-16
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/
%G ru
%F SVFU_2019_26_2_a0
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I. Matematičeskie zametki SVFU, Tome 26 (2019) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2019_26_2_a0/