Boundary value problems for twice degenerate differential equations with multiple characteristics
Matematičeskie zametki SVFU, Tome 25 (2018) no. 4, pp. 34-44
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the solvability of boundary value problems for degenerate differential equations of the form $$ \varphi(t)u_t-(-1)^m\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t) $$ ($D^k_x=\frac{\partial^k}{\partial x^k}$, $m\ge1$ is an integer, $x\in(0,1)$, $t\in(0,T)$, $0), called equations with multiple characteristics. In these equations, the function $\varphi(t)$ can change the sign on the interval $[0,T]$ arbitrarily, while the function $\psi(t)$ is assumed nonnegative. For the equations under consideration, we propose the formulation of boundary value problems which are essentially determined by numbers $\varphi(0)$ and $\psi(T)$. Existence and uniqueness theorems are proved for the regular solutions that have all Sobolev generalized derivatives entering into the equation.
Keywords:
differential equations of odd order, degeneracy, change of direction of evolution, boundary value problems, regular solutions, uniqueness.
Mots-clés : existence
Mots-clés : existence
@article{SVFU_2018_25_4_a2,
author = {A. I. Kozhanov and O. S. Zikirov},
title = {Boundary value problems for twice degenerate differential equations with multiple characteristics},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {34--44},
year = {2018},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_4_a2/}
}
TY - JOUR AU - A. I. Kozhanov AU - O. S. Zikirov TI - Boundary value problems for twice degenerate differential equations with multiple characteristics JO - Matematičeskie zametki SVFU PY - 2018 SP - 34 EP - 44 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_4_a2/ LA - ru ID - SVFU_2018_25_4_a2 ER -
A. I. Kozhanov; O. S. Zikirov. Boundary value problems for twice degenerate differential equations with multiple characteristics. Matematičeskie zametki SVFU, Tome 25 (2018) no. 4, pp. 34-44. http://geodesic.mathdoc.fr/item/SVFU_2018_25_4_a2/