Classical solvability of the radial viscous fingering problem in a Hele–Shaw cell
Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 92-114
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss a single-phase radial viscous fingering problem in a Hele–Shaw cell, which is a nonlinear problem with a free boundary for an elliptic equation. Unlike the Stefan problem for heat equation Hele–Shaw problem is of hydrodynamic type. In this paper a single-phase Hele–Shaw problem in a radial flow geometry admits a unique classical solution by applying the same method as for Stefan problem and justifying the vanishing the coefficient of the derivative with respect to time in a parabolic equation.
Keywords:
radial viscous fingering, Hele–Shaw problem
Mots-clés : unique classical solution.
Mots-clés : unique classical solution.
@article{SVFU_2018_25_3_a6,
author = {A. Tani and H. Tani},
title = {Classical solvability of the radial viscous fingering problem in a {Hele{\textendash}Shaw} cell},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {92--114},
year = {2018},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a6/}
}
A. Tani; H. Tani. Classical solvability of the radial viscous fingering problem in a Hele–Shaw cell. Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 92-114. http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a6/