Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks
Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 43-53
Cet article a éte moissonné depuis la source Math-Net.Ru
A mathematical model describing an equilibrium of cracked two-dimensional bodies with two mutually intersecting cracks is considered. One of these cracks is assumed to be straight, and the second one is described with the use of a smooth curve. Inequality type boundary conditions are imposed at the both cracks faces providing mutual non-penetration between crack faces. On the external boundary, homogeneous Dirichlet boundary conditions are imposed. We study a family of corresponding variational problems which depends on the parameter describing the length of the straight crack and analyze the dependence of solutions on this parameter. Existence of the solution to the optimal control problem is proved. For this problem, the cost functional is defined by a Griffith-type functional, which characterizes a possibility of curvilinear crack propagation along the prescribed path. Meanwhile, the length parameter of the straight crack is chosen as a control parameter.
Keywords:
variational inequality, optimal control problem, nonpenetration, non-linear boundary conditions, crack.
@article{SVFU_2018_25_3_a3,
author = {N. P. Lazarev and E. M. Rudoy and T. S. Popova},
title = {Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {43--53},
year = {2018},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a3/}
}
TY - JOUR AU - N. P. Lazarev AU - E. M. Rudoy AU - T. S. Popova TI - Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks JO - Matematičeskie zametki SVFU PY - 2018 SP - 43 EP - 53 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a3/ LA - ru ID - SVFU_2018_25_3_a3 ER -
%0 Journal Article %A N. P. Lazarev %A E. M. Rudoy %A T. S. Popova %T Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks %J Matematičeskie zametki SVFU %D 2018 %P 43-53 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a3/ %G ru %F SVFU_2018_25_3_a3
N. P. Lazarev; E. M. Rudoy; T. S. Popova. Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks. Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 43-53. http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a3/