Linear inverse problems of spatial type for quasiparabolic equations
Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 3-17
Cet article a éte moissonné depuis la source Math-Net.Ru
We study solvability of the inverse problems for finding both the solution $u(x,t)$ and the coefficient $q(x)$ in the equation $$ (-1)^{m+1}\frac{\partial^{2m+1}u}{\partial t^{2m+1}}+\Delta u+\mu u=f(x,t)+q(x)h(x,t), $$ where $x=(x_1,\dots, x_n)\in\Omega,$ $\Omega$ is a bounded domain in $\mathbb{R}^n,$ $t\in(0,T),$ $0 $f(x,t)$ and $h(x, t)$ are given functions, $\mu$ is a given real, $m$ is a given natural, and $\Delta$ is necessary due to presence of the additional unknown function $q(x)$), the boundary overdetermination condition is used in the article (with $t=0$ or $t=T$). For the problems under study, the existence and uniqueness theorems for regular solutions are proved (all derivatives are the Sobolev generalized derivatives).
Keywords:
linear inverse problem, boundary overdetermination condition, regular solutions, uniqueness.
Mots-clés : quasiparabolic equations, existence
Mots-clés : quasiparabolic equations, existence
@article{SVFU_2018_25_3_a0,
author = {E. V. Akimova and A. I. Kozhanov},
title = {Linear inverse problems of spatial type for quasiparabolic equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {3--17},
year = {2018},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a0/}
}
E. V. Akimova; A. I. Kozhanov. Linear inverse problems of spatial type for quasiparabolic equations. Matematičeskie zametki SVFU, Tome 25 (2018) no. 3, pp. 3-17. http://geodesic.mathdoc.fr/item/SVFU_2018_25_3_a0/