Absolute $\sigma$-retracts and Luzin's theorem
Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 55-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove some properties of absolute $\sigma$-retracts. The generalization of the classical Luzin theorem about approximation of a measurable mapping by continuous mappings is given. Namely, we prove the following statement: Theorem. Let $Y$ be a complete separable metric space in $AR_\sigma(\mathfrak M)$, where $AR_\sigma(\mathfrak M)$ is the whole complex of all absolute $\sigma$-retracts. Suppose that $X$ is a normal space, $A$ is a closed subset in $X$, $\mu\geq0$ is the Radon measure on $A$, and $f\colon A\to Y$ is a $\mu$-measurable mapping. Given $\varepsilon>0$, there exist a closed subset $A_\varepsilon$ of $A$ such that $\mu(A\setminus A_\varepsilon)\leq\varepsilon$ and a continuous mapping $f_\varepsilon\colon X\to Y$ such that $f_\varepsilon(x)=f(x)$ for all $x\in A_\varepsilon$. Note that a connected separable $ANR(\mathfrak{M})$-space belongs to $AR_\sigma(\mathfrak{M})$.
Keywords: absolute $\sigma$-retract, Luzin's theorem.
@article{SVFU_2018_25_2_a5,
     author = {P. V. Chernikov},
     title = {Absolute $\sigma$-retracts and {Luzin's} theorem},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {55--64},
     year = {2018},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a5/}
}
TY  - JOUR
AU  - P. V. Chernikov
TI  - Absolute $\sigma$-retracts and Luzin's theorem
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 55
EP  - 64
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a5/
LA  - ru
ID  - SVFU_2018_25_2_a5
ER  - 
%0 Journal Article
%A P. V. Chernikov
%T Absolute $\sigma$-retracts and Luzin's theorem
%J Matematičeskie zametki SVFU
%D 2018
%P 55-64
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a5/
%G ru
%F SVFU_2018_25_2_a5
P. V. Chernikov. Absolute $\sigma$-retracts and Luzin's theorem. Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a5/