Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients
Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 12-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the solvability of an initial-boundary value problem with conjugation conditions for two nonclassical differential equations of composite type. We describe the case when the coefficients of each equation under consideration have a discontinuity of the first kind at the point zero. The field of research is given in the form of a band, due to the presence of a discontinuity point consisting of two subregions. Thus, the investigated equations are considered in two different areas. To prove the existence and uniqueness of regular solutions (which have all the generalized derivatives entering into the equations) of the initial-boundary value problem, we use the method of continuation with respect to a parameter, which has a wide application in the theory of boundary value problems. Using the maximum principle, the presence of all necessary a priori estimates for the solutions of the problem being studied is established.
Mots-clés : composite type equation, conjugation problem
Keywords: initial-boundary problem, breakdown coeffcients, regular solution, existence and uniqueness, a priori estimate.
@article{SVFU_2018_25_2_a1,
     author = {A. I. Grigorieva},
     title = {Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {12--26},
     year = {2018},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/}
}
TY  - JOUR
AU  - A. I. Grigorieva
TI  - Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 12
EP  - 26
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/
LA  - ru
ID  - SVFU_2018_25_2_a1
ER  - 
%0 Journal Article
%A A. I. Grigorieva
%T Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients
%J Matematičeskie zametki SVFU
%D 2018
%P 12-26
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/
%G ru
%F SVFU_2018_25_2_a1
A. I. Grigorieva. Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients. Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 12-26. http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/

[1] Dzhuraev T. D., Boundary Value Problems for Mixed and Mixed-Composite Type Equations, Fan, Tashkent, 1986

[2] Kozhanov A. I., Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl

[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl

[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, Moscow, 2007

[5] Korpusov M. O., Blow-up in Non-classical Nonlocal Equations, Librokom, Moscow, 2011

[6] Amirov Sh., Kozhanov A. I., “Global solvability of initial boundary-value problems for nonlinear analogs of the Boussinesq equation”, Math. Notes, 99:2 (2016), 183–191 | DOI | DOI | MR | Zbl

[7] Bitsadze A. V., Equations of Mixed Type, Izdat. Akad. Nauk SSSR, Moscow, 1959

[8] Ladyzhenskaya O. A., Stupjalis L., “On equations of mixed type”, Vestn. Leningr. Univ., 1967, no. 18, 38–46

[9] Smirnov M. M., Equations of Mixed Type, Nauka, Moscow, 1970

[10] Ladyzhenskaya O. A., Stupjalis L., “Boundary problems for mixed-type equations”, Tr. Mat. Inst. Steklova, 116 (1971), 101–136 | Zbl

[11] Stupyalis L., “Boundary problems for elliptic-hyperbolic equations”, Tr. Mat. Inst. Steklova, 125 (1973), 211–229 | Zbl

[12] Tersenov S. A., Introduction to the Theory of Parabolic Equations with Varying Time Direction, Inst. Mat., Novosibirsk, 1982

[13] Moiseev E. I., Equations of Mixed Type with Spectral Parameter, Izdat. Mosk. Univ., Moscow, 1988

[14] Soldatov A. P., “Problems of Dirichlet type for the Lavrent’ev–Bitsadze equation. I: Uniqueness theorems. II. Existence theorems”, Dokl. Math., 332, 333:6, 1 (1993), 696–698, 16–18 | Zbl

[15] Hachev M. M., First Boundary Problem for Linear Mixed-Type Equations, Ehl'brus, Nal'chik, 1988

[16] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR

[17] Nakhushev A. M., Problems with Shifts for Partial Differential Equations, Nauka, Moscow, 2006

[18] Sabitov K. B., “Dirichlet problem for mixed-type equation in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | Zbl

[19] Marichev O. I., Kilbas A. A., Repin O. A., Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients, Samarsk. Gos. Ekonom. Univ., Samara, 2008

[20] Moiseev E. I., Lihomanenko T. N., “A nonlocal boundary value problem for the Lavrent'ev–Bitsadze equation”, Dokl. Math., 86:2 (2012), 187–197 | DOI | MR | Zbl

[21] Sabitov K. B., “Boundary value problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 49:2 (2013), 187–197 | DOI | MR | Zbl

[22] Kozhanov A. I., “A conjugation problem for a class of composite-type equations of variable direction”, Nonclassical Equations of Mathematical Physics, Izdat. Sobolev Inst. Mat., Novosibirsk, 2002, 96–109 | Zbl

[23] Kozhanov A. I., Potapova S. V., “Conjugate problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, J. Math. Sci., 215:4 (2016), 510–516, New York | DOI | MR | Zbl

[24] Kozhanov A. I., Potapova S. V., “Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution”, Dokl. Math., 95:3 (2017), 267–269 | DOI | DOI | MR | Zbl

[25] Il'in V. A., Luferenko P. V., “Mixed problems describing longitudinal oscillations of a rod consisting of two segments with different densities and different elasticities but equal impedances”, Dokl. Math., 80:2 (2009), 642–645 | DOI | MR | Zbl

[26] Il'in V. A., Luferenko P. V., “Generalized solutions of initial-boundary value problems for a discontinuous wave equation in the case of equal impedances”, Dokl. Math., 80:3 (2009), 901–905 | DOI | MR | Zbl

[27] Olejnik O. A., “Boundary problems for linear elliptic and parabolic types with discontinuous coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 3–20 | Zbl

[28] Il'in V. A., “On the solvability of the Dirichlet and Neumann problems for a linear elliptic operator with discontinuous coefficients”, Sov. Math., Dokl., 2 (1961), 228–231 | Zbl

[29] Il'in V. A., “The Fourier method for a hyperbolic equation with discontinuous coefficients”, Sov. Math., Dokl., 3 (1962), 12–16 | Zbl

[30] Ladyzhenskaya O. A., Solonnikov V. A., Ural'ceva N. N., Linear and Quasilinear Parabolic Equations, Nauka, Moscow, 1967 | MR

[31] Rogozhnikov A. M., “Study of a mixed problem describing the oscillations of a rod consisting of several segments with arbitrary lengths”, Dokl. Math., 85:3 (2012), 399–402 | DOI | MR | Zbl

[32] Kuleshov A. A., “Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities”, Dokl. Math., 85:1 (2012), 80–82 | DOI | MR | Zbl

[33] Smirnov I. N., “On the vibrations described by the telegraph equation in the case of a system consisting of several parts of different densities and elasticities”, Differ. Equ., 49:5 (2013), 617–622 | DOI | MR | Zbl

[34] Shubin V. V., “Boundary value problems for third-order equations with a discontinuous coefficient”, J. Math. Sci., 198:5 (2014), 637–647, New York | DOI | MR | Zbl

[35] Potapova S. V., “Boundary value problems for pseudoparabolic equations with a variable time direction. TWMS”, J. Inequal. Pure Appl. Math., 3:1 (2012), 73 | MR

[36] Kozhanov A. I., Potapova S. V., “The Dirichlet problem for a class of composite type equations with a discontinuous coefficient of the highest derivative”, Dal'nevost. Mat. Zh., 14:1 (2014), 48–65 | MR | Zbl

[37] Kozhanov A. I., Sharin E. F., “A conjugate problem for some higher order nonclassical equations, II”, Mat. zametki SVFU, 21:1 (2014), 16–25 | Zbl

[38] Trenogin V. A., Functional Analysis, Fizmatlit, Moscow, 2007