Keywords: initial-boundary problem, breakdown coeffcients, regular solution, existence and uniqueness, a priori estimate.
@article{SVFU_2018_25_2_a1,
author = {A. I. Grigorieva},
title = {Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {12--26},
year = {2018},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/}
}
TY - JOUR AU - A. I. Grigorieva TI - Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients JO - Matematičeskie zametki SVFU PY - 2018 SP - 12 EP - 26 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/ LA - ru ID - SVFU_2018_25_2_a1 ER -
A. I. Grigorieva. Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients. Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 12-26. http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a1/
[1] Dzhuraev T. D., Boundary Value Problems for Mixed and Mixed-Composite Type Equations, Fan, Tashkent, 1986
[2] Kozhanov A. I., Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl
[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl
[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, Moscow, 2007
[5] Korpusov M. O., Blow-up in Non-classical Nonlocal Equations, Librokom, Moscow, 2011
[6] Amirov Sh., Kozhanov A. I., “Global solvability of initial boundary-value problems for nonlinear analogs of the Boussinesq equation”, Math. Notes, 99:2 (2016), 183–191 | DOI | DOI | MR | Zbl
[7] Bitsadze A. V., Equations of Mixed Type, Izdat. Akad. Nauk SSSR, Moscow, 1959
[8] Ladyzhenskaya O. A., Stupjalis L., “On equations of mixed type”, Vestn. Leningr. Univ., 1967, no. 18, 38–46
[9] Smirnov M. M., Equations of Mixed Type, Nauka, Moscow, 1970
[10] Ladyzhenskaya O. A., Stupjalis L., “Boundary problems for mixed-type equations”, Tr. Mat. Inst. Steklova, 116 (1971), 101–136 | Zbl
[11] Stupyalis L., “Boundary problems for elliptic-hyperbolic equations”, Tr. Mat. Inst. Steklova, 125 (1973), 211–229 | Zbl
[12] Tersenov S. A., Introduction to the Theory of Parabolic Equations with Varying Time Direction, Inst. Mat., Novosibirsk, 1982
[13] Moiseev E. I., Equations of Mixed Type with Spectral Parameter, Izdat. Mosk. Univ., Moscow, 1988
[14] Soldatov A. P., “Problems of Dirichlet type for the Lavrent’ev–Bitsadze equation. I: Uniqueness theorems. II. Existence theorems”, Dokl. Math., 332, 333:6, 1 (1993), 696–698, 16–18 | Zbl
[15] Hachev M. M., First Boundary Problem for Linear Mixed-Type Equations, Ehl'brus, Nal'chik, 1988
[16] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR
[17] Nakhushev A. M., Problems with Shifts for Partial Differential Equations, Nauka, Moscow, 2006
[18] Sabitov K. B., “Dirichlet problem for mixed-type equation in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | Zbl
[19] Marichev O. I., Kilbas A. A., Repin O. A., Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients, Samarsk. Gos. Ekonom. Univ., Samara, 2008
[20] Moiseev E. I., Lihomanenko T. N., “A nonlocal boundary value problem for the Lavrent'ev–Bitsadze equation”, Dokl. Math., 86:2 (2012), 187–197 | DOI | MR | Zbl
[21] Sabitov K. B., “Boundary value problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 49:2 (2013), 187–197 | DOI | MR | Zbl
[22] Kozhanov A. I., “A conjugation problem for a class of composite-type equations of variable direction”, Nonclassical Equations of Mathematical Physics, Izdat. Sobolev Inst. Mat., Novosibirsk, 2002, 96–109 | Zbl
[23] Kozhanov A. I., Potapova S. V., “Conjugate problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, J. Math. Sci., 215:4 (2016), 510–516, New York | DOI | MR | Zbl
[24] Kozhanov A. I., Potapova S. V., “Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution”, Dokl. Math., 95:3 (2017), 267–269 | DOI | DOI | MR | Zbl
[25] Il'in V. A., Luferenko P. V., “Mixed problems describing longitudinal oscillations of a rod consisting of two segments with different densities and different elasticities but equal impedances”, Dokl. Math., 80:2 (2009), 642–645 | DOI | MR | Zbl
[26] Il'in V. A., Luferenko P. V., “Generalized solutions of initial-boundary value problems for a discontinuous wave equation in the case of equal impedances”, Dokl. Math., 80:3 (2009), 901–905 | DOI | MR | Zbl
[27] Olejnik O. A., “Boundary problems for linear elliptic and parabolic types with discontinuous coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 3–20 | Zbl
[28] Il'in V. A., “On the solvability of the Dirichlet and Neumann problems for a linear elliptic operator with discontinuous coefficients”, Sov. Math., Dokl., 2 (1961), 228–231 | Zbl
[29] Il'in V. A., “The Fourier method for a hyperbolic equation with discontinuous coefficients”, Sov. Math., Dokl., 3 (1962), 12–16 | Zbl
[30] Ladyzhenskaya O. A., Solonnikov V. A., Ural'ceva N. N., Linear and Quasilinear Parabolic Equations, Nauka, Moscow, 1967 | MR
[31] Rogozhnikov A. M., “Study of a mixed problem describing the oscillations of a rod consisting of several segments with arbitrary lengths”, Dokl. Math., 85:3 (2012), 399–402 | DOI | MR | Zbl
[32] Kuleshov A. A., “Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities”, Dokl. Math., 85:1 (2012), 80–82 | DOI | MR | Zbl
[33] Smirnov I. N., “On the vibrations described by the telegraph equation in the case of a system consisting of several parts of different densities and elasticities”, Differ. Equ., 49:5 (2013), 617–622 | DOI | MR | Zbl
[34] Shubin V. V., “Boundary value problems for third-order equations with a discontinuous coefficient”, J. Math. Sci., 198:5 (2014), 637–647, New York | DOI | MR | Zbl
[35] Potapova S. V., “Boundary value problems for pseudoparabolic equations with a variable time direction. TWMS”, J. Inequal. Pure Appl. Math., 3:1 (2012), 73 | MR
[36] Kozhanov A. I., Potapova S. V., “The Dirichlet problem for a class of composite type equations with a discontinuous coefficient of the highest derivative”, Dal'nevost. Mat. Zh., 14:1 (2014), 48–65 | MR | Zbl
[37] Kozhanov A. I., Sharin E. F., “A conjugate problem for some higher order nonclassical equations, II”, Mat. zametki SVFU, 21:1 (2014), 16–25 | Zbl
[38] Trenogin V. A., Functional Analysis, Fizmatlit, Moscow, 2007