Mots-clés : partial solution
@article{SVFU_2018_25_2_a0,
author = {O. A. Vikhreva},
title = {On the first boundary value problem for a strongly degenerate ordinary differential equation},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {3--11},
year = {2018},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/}
}
O. A. Vikhreva. On the first boundary value problem for a strongly degenerate ordinary differential equation. Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/
[1] Akhiezer N. I., Glazman I. M., Theory of Linear Operators in Hilbert Space, Nauka, Moscow, 1966 | MR
[2] Bayev A. D., Some Qualitative Methods of Mathematical Modeling in the Theory of the Degenerate Boundary Value Problem, Diss. Dokt. Fiz.-Mat. Nauk, Voronezh Gos. Univ., Voronezh, 2008
[3] Vikhreva O. A., “The spectrum of a degenerate second-order ordinary differential operator”, Mat. Zametki YaGU, 20:1 (2013), 12–19
[4] Vikhreva O. A., Tarasova G. I., “On the generalized solvability of the first boundary value problem for a degenerate ordinary equation”, Vestn. SVFU, 12:2 (2015), 7–10
[5] Keldysh M. V., “About some cases of degeneration of the equations of elliptic type”, Dokl. Akad. Nauk SSSR, 77:2 (1951), 181–183
[6] Smirnov M. M., Degenerated Elliptic and Hyperbolic Equations, Nauka, Moscow, 1966
[7] Vikhreva O. A., “Generalized and Fredholm resolvability of the mixed regional task for a degenerate elliptic equation”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 56:6 (2007), 194–202 | MR
[8] Vikhreva O. A., “Dirichlet problem for a nonlinear degenerate elliptic equation”, Mat. Zametki YaGU, 15:1 (2008), 39–44
[9] Vikhreva O. A., “Boundary value problem for a degenerate elliptic equation”, Sb. Trudov Resp. Nauchn.-Prakt. Konf. Informatsionnye Tekhnologii v Nauke, Obrazovanii i Economike, Yakutsk, 2003, 113–118
[10] Vishik M. I., “Boundary value problems for elliptic equations degenerating on the boundary of a domain”, Mat. Sb., Nov. Ser., 35:5 (1954), 513–568 | Zbl
[11] Dunford N. and Schwartz J. T., Linear Operators, Part II: Spectral Theory, Mir, Moscow, 1966
[12] Proc. Steklov Inst. Math., 229 (2000), 131–141 | MR | Zbl
[13] Egorov I. E., “Embedding theorems and compactness for a class of weighted spaces”, Non-classical Equations of Mathematical Physics, Izdat. Novosib. Gos. Univ., Novosibirsk, 1993, 161–168
[14] Tikhonov N. A., “On the generalized solvability of the third boundary value problem for a degenerate ordinary equation”, Mat. Zametki YaGU, 6:1 (1999), 54–59 | Zbl
[15] Mikhlin S. G., Variational Methods in Mathematical Physics, Nauka, Moscow, 1970 | MR