On the first boundary value problem for a strongly degenerate ordinary differential equation
Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a particular case of the earlier studied by the author second order degenerate differential operator with the same assumptions and designations. We focus on the study of the effects associated with the “strong” degeneration. The problem is solved to be used in further researches of formally conjugated (coupled transposition operation) equation and also for obtaining some theorems of existence and uniqueness for generalized solutions of formally conjugated equations from the proved theorem. The use of the following results is reduced to the operator equations in the simplest case. We study existence and uniqueness of the generalized solution of the first boundary value problem for the given equation using the operator theory and obtain the generalized solution to the equation in the case connected with “strong” degeneration. The results will be used in the future for research of equations with model operators which arise in mathematical modeling of various physical processes.
Keywords: Hilbert space, degenerate differential operator, generalized solution, “weak” degeneration, “strong"” degeneration, nonhomogeneous equation, general solution, model operator.
Mots-clés : partial solution
@article{SVFU_2018_25_2_a0,
     author = {O. A. Vikhreva},
     title = {On the first boundary value problem for a strongly degenerate ordinary differential equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--11},
     year = {2018},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/}
}
TY  - JOUR
AU  - O. A. Vikhreva
TI  - On the first boundary value problem for a strongly degenerate ordinary differential equation
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 3
EP  - 11
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/
LA  - ru
ID  - SVFU_2018_25_2_a0
ER  - 
%0 Journal Article
%A O. A. Vikhreva
%T On the first boundary value problem for a strongly degenerate ordinary differential equation
%J Matematičeskie zametki SVFU
%D 2018
%P 3-11
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/
%G ru
%F SVFU_2018_25_2_a0
O. A. Vikhreva. On the first boundary value problem for a strongly degenerate ordinary differential equation. Matematičeskie zametki SVFU, Tome 25 (2018) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/SVFU_2018_25_2_a0/

[1] Akhiezer N. I., Glazman I. M., Theory of Linear Operators in Hilbert Space, Nauka, Moscow, 1966 | MR

[2] Bayev A. D., Some Qualitative Methods of Mathematical Modeling in the Theory of the Degenerate Boundary Value Problem, Diss. Dokt. Fiz.-Mat. Nauk, Voronezh Gos. Univ., Voronezh, 2008

[3] Vikhreva O. A., “The spectrum of a degenerate second-order ordinary differential operator”, Mat. Zametki YaGU, 20:1 (2013), 12–19

[4] Vikhreva O. A., Tarasova G. I., “On the generalized solvability of the first boundary value problem for a degenerate ordinary equation”, Vestn. SVFU, 12:2 (2015), 7–10

[5] Keldysh M. V., “About some cases of degeneration of the equations of elliptic type”, Dokl. Akad. Nauk SSSR, 77:2 (1951), 181–183

[6] Smirnov M. M., Degenerated Elliptic and Hyperbolic Equations, Nauka, Moscow, 1966

[7] Vikhreva O. A., “Generalized and Fredholm resolvability of the mixed regional task for a degenerate elliptic equation”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 56:6 (2007), 194–202 | MR

[8] Vikhreva O. A., “Dirichlet problem for a nonlinear degenerate elliptic equation”, Mat. Zametki YaGU, 15:1 (2008), 39–44

[9] Vikhreva O. A., “Boundary value problem for a degenerate elliptic equation”, Sb. Trudov Resp. Nauchn.-Prakt. Konf. Informatsionnye Tekhnologii v Nauke, Obrazovanii i Economike, Yakutsk, 2003, 113–118

[10] Vishik M. I., “Boundary value problems for elliptic equations degenerating on the boundary of a domain”, Mat. Sb., Nov. Ser., 35:5 (1954), 513–568 | Zbl

[11] Dunford N. and Schwartz J. T., Linear Operators, Part II: Spectral Theory, Mir, Moscow, 1966

[12] Proc. Steklov Inst. Math., 229 (2000), 131–141 | MR | Zbl

[13] Egorov I. E., “Embedding theorems and compactness for a class of weighted spaces”, Non-classical Equations of Mathematical Physics, Izdat. Novosib. Gos. Univ., Novosibirsk, 1993, 161–168

[14] Tikhonov N. A., “On the generalized solvability of the third boundary value problem for a degenerate ordinary equation”, Mat. Zametki YaGU, 6:1 (1999), 54–59 | Zbl

[15] Mikhlin S. G., Variational Methods in Mathematical Physics, Nauka, Moscow, 1970 | MR