Keywords: hyperbolic heat equation, alternating direction scheme, Navier-Stokes equations, heat balance.
@article{SVFU_2018_25_1_a8,
author = {V. N. Khankhasaev and E. V. Darmakheev},
title = {On some applications of the hyperbolic heat equation and the methods for solving it},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {98--111},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a8/}
}
TY - JOUR AU - V. N. Khankhasaev AU - E. V. Darmakheev TI - On some applications of the hyperbolic heat equation and the methods for solving it JO - Matematičeskie zametki SVFU PY - 2018 SP - 98 EP - 111 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a8/ LA - ru ID - SVFU_2018_25_1_a8 ER -
V. N. Khankhasaev; E. V. Darmakheev. On some applications of the hyperbolic heat equation and the methods for solving it. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a8/
[1] Poltev A. I.,, Construction and Calculation of High-Voltage SF6 Apparatuses, Energia, Leningrad, 1979
[2] Buyantuev S. L., Besprozvannykh M. N., Batorov S. S., Borodyansky G. Ya., Method of quenching a high-current arc of a high-voltage switch, USSR Authors’ Cert. No. 1634042, Gos. Reg. 08.10.1990.
[3] Buyantuev S. L., Khankhasaev V. N., “Numerical investigation of nonstationary processes at the current zero”, Sb. Dokl. Vsesoyuz. Semin. «Nonstationary Arc and Near-Electrode Processes in Electrical Apparatuses and Plasma Torches», Inst. Mat. Mekh. Akad. Nauk Kazakh. SSR, Alma-Ata, 1991, 29–36
[4] Buyantuev S. L., Khankhasaev V. N., “On a generalization of the Navier–Stokes equations in mathematical models of an electric arc in a spiral gas flow at the moment of current interruption”, Elektrichestvo, 1996, no. 11, 17–23
[5] Khankhasaev V. N., Buyantuev S. L., “Numerical calculation of a mathematical model of an electric arc in a gas flow”, Sb. Trudov Mezhdunar. Nauchn.-Prakt. Konf. «Energy Saving and Environmental Technologies at Baikal», Ulan-Ude, 2001, 168–172
[6] Formalev V. F., Selin I. A., and Kuznetsova E. L., “The occurrence and propagation of thermal waves in a nonlinear anisotropic space”, Izv. Ross. Akad. Nauk., Ser. Energetika, 2010, no. 3, 136–141
[7] Shashkov A. G., Bubnov V. A., Yanovsky S. Yu., Wave Phenomena of Thermal Conductivity, URSS, Moscow, 2004
[8] Cattaneo G., “Sur une forme de l'equation de la chauleur eliminent le paradoxe d'une propaga tion instance”, Compt. Rendus., 247:4 (1958), 431–433 | MR
[9] Vernotte P., “Les paradoxes de la theorie continue de léquation de la chauleur”, Compt. Rendus., 246:22 (1958), 3154–3155 | MR | Zbl
[10] Lykov A. V., Heat and Mass Transfer, Energia, Moscow, 1972
[11] Bubnov V. A., “Molecular-kinetic substantiation of the heat transfer equation”, Inzh.-Fiz. Zh., 28:4 (1975), 670–676
[12] Shablovsky O. N., “Propagation of a plane shock heat wave in a nonlinear medium”, Inzh.-Fiz. Zh., 49:3 (1985), 436–443
[13] Kuvyrkin G. N., High Temperature, 25:1 (1987), 68–73
[14] Borodyansky G. Ya., “Relaxation model of electric arc dynamics”, Tez. Dokl. 7th Vsesoyuz. Sessii Nauchn. Soveta «Low-Temperature Plasma Physics», Ulan-Ude, 1988, 19
[15] Danilenko V. A., Kudinov V. M., Makarenko A. S., Influence of memory effects on the formation of dissipative structures during fast processes, Preprint No83-1, Akad. Nauk Ukrain. SSR, Inst. Elektrosvarki, Kiev, 1983, 58 pp.
[16] Khankhasaev V. N. and Mizhidon G. A., “Algorithm for numerical calculation of the mixed heat equation in the one-dimensional case”, Proc. 6th Int. Conf. «Mathematics, its Applications and Mathematical Education», Ulan-Ude, 2017, 357–359
[17] Khankhasaev V. N., Mestnikova N. N., “A scheme of alternating directions for the numerical solution of a hyperbolic-parabolic equation”, Sb. Trudov Mezhdunar. Konf. «Cubature Formulas, Monte Carlo Methods and Their Applications», Inst. Kosmich. Informats. Tekhnol. Sib. Feder. Univ., Krasnoyarsk, 2011, 117–120
[18] Khankhasaev V. N., Mestnikova N. N., Khankhasaeva Ya. V., “Numerical solution of a hyperbolic-parabolic equation by a scheme of alternating directions”, Sb. Trudov Mezhdunar. Nauchn.-Prakt. Konf. «Innovative Technologies in Science and Education», Buryatsk. Gos. Univ., Ulan-Ude, 2011, 79–82
[19] Ladyzhenskaya O. A., Boundary-Value Problems of Mathematical Physics, Nauka, Moscow, 1973
[20] Romanova N. A., On the convergence of difference schemes of a boundary-value problem for equations of mixed type, Diss. kand. fiz.-mat. nauk (01.01.02), Yakutsk. Gos. Univ., Yakutsk, 1994
[21] Dulnev G. N., The Use of Computers for Solving Heat Transfer Problems, Vyssh. Shkola, Moscow, 1990
[22] Khankhasaev V. N., Darmakheev E. V., “A scheme of alternating directions for the numerical solution of the mixed heat equation”, Mat. Semin. «Aktual'nye Voprosy Veshchestvennogo i Funktsional'nogo Analiza», Ulan-Ude, 2015, 122–127
[23] Ragaller K., Egli W., Brand K., “Dielectric recovery of an axially blown $SF^6$-arc after current zero”, IEEE Trans. Plazma Sci., 10:3 (1982), 154–162 | DOI
[24] Ferziger J., Kaper G., Mathematical Theory of Transport Processes in Gases, Mir, Moscow, 1976