Modeling of particle motion in spiral pneumoseparator by statistical methods
Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 90-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In mathematical modeling of mineral processing, there arise problems of determining the probability of the particle presence on the working surfaces of devices. In the paper, we propose a statistical approach to solving such problem, i. e., the idea of the Gibbs method is used. We consider problems of modeling processes in an air spiral separator. A mathematical model of the spiral surface of a pneumoseparator, a model of particle motion, a flux of noninteracting particles along the separator working surface, and an algorithm for determining the particle flux concentration are developed. The calculated distribution of the noninteracting particles concentration on the working surface of the device is identified with the probability distribution of the location of one particle. The developed algorithm for determining the probability of position of a particle on the working surface of the pneumoseparator can be used as an element of a more complex mathematical model, for example, a model where interactions between particles are taken into account.
Keywords: spiral separator, statistical method, particle flow, enrichment, mathematical model.
Mots-clés : concentration, motion equation
@article{SVFU_2018_25_1_a7,
     author = {S. R. Krylatova and A. I. Matveev and I. F. Lebedev and B. V. Yakovlev},
     title = {Modeling of particle motion in spiral pneumoseparator by statistical methods},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {90--97},
     year = {2018},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a7/}
}
TY  - JOUR
AU  - S. R. Krylatova
AU  - A. I. Matveev
AU  - I. F. Lebedev
AU  - B. V. Yakovlev
TI  - Modeling of particle motion in spiral pneumoseparator by statistical methods
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 90
EP  - 97
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a7/
LA  - ru
ID  - SVFU_2018_25_1_a7
ER  - 
%0 Journal Article
%A S. R. Krylatova
%A A. I. Matveev
%A I. F. Lebedev
%A B. V. Yakovlev
%T Modeling of particle motion in spiral pneumoseparator by statistical methods
%J Matematičeskie zametki SVFU
%D 2018
%P 90-97
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a7/
%G ru
%F SVFU_2018_25_1_a7
S. R. Krylatova; A. I. Matveev; I. F. Lebedev; B. V. Yakovlev. Modeling of particle motion in spiral pneumoseparator by statistical methods. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 90-97. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a7/

[1] Matveev A. I., Filippov V. E., Fedorov F. M., Grigoriev A. N., Yakovlev V. B., Eremeeva N. G., Slepsova E. S., Gladyshev A. M., Vinokurov V. P., “Patent No. 2167005”, Inventions, utility models No14, 2001, suppl. 2, 346

[2] Hasankhoei A. R., Banisi S., Mozafari P., “Designing a spiral splitter at the Zarand coal washing plant”, Indian J. Sci. Res., 2:1 (2014), 151–156

[3] Shuvalov S. I., Andreev A. A., “Mathematical description of motion of particles in a dynamic separator”, Vestn. Ivanovsk. Gos. Energ. Univ., 2005, no. 1, 25–28

[4] Matveev A. I., Lebedev I. F., Nikiforova L. V., and Yakolev B. V., “Modeling of motion of particles in a spiral pneumoseparator”, Mining Inform. Anal. Bull., 2014, no. 10, 172–178

[5] Barskii M. D., Revnivtsev V. I., Sokolkin Y. V., Gravitational classification of granular materials, Nedra, Moscow, 1974

[6] Filippov V. E., Lebedev I. F., Matveev A. I., and Grigoriev A. N., “Patent No. 2194581”, Invetions, utility models, 2002, no. 35

[7] Kapur P. C., Meloy T. P., “Spirals observed”, Int. J. Mineral Process, 53 (1998), 15–28 | DOI

[8] Das S. K., Godivalla K. M., Panda L., Bhattacharya K. K., Singh R., Mehrotra S. P., “Mathematical modeling of separation characteristics of coal-washing spiral”, Int. J. Mineral Process, 84 (2007), 118–132 | DOI

[9] Mishra B. K., Alok Tripathy, “A preliminary study of particle separation in spiral concentrators using DEM”, Int. J. Mineral Process, 94 (2010), 192–195 | DOI

[10] Germanyuk G. Y., Mathematical Modeling of Particle Set Movement Using Canonical Method of Integration, Diss. Kand. Fiz.-Mat. Nauk, Izhevsk, 2010

[11] Gibbs J. W., Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics, Dover Publ., New York, 1902 | MR

[12] Landau L. D., Lifshitz E. M., Theoretical Physics. Statistical Physics, v. 5, Nauka, Moscow, 1976

[13] Karman T., Aerodynamics: Selected topics in the light of their historical development, Cornell Univ. Press, Ithaca, NY, 1954 | Zbl

[14] Frolov S. A., Descriptive geometry, Mashinostroenie, Mashinostroenie, 1983

[15] Sivukhin D. V., General Course of Physics. Mechanics, v. 1, Nauka, Moscow, 1979