On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion
Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 73-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An equilibrium problem for elastic bodies with a thin elastic inclusion and a thin semi-rigid inclusion is investigated. The inclusions are assumed to be delaminated from the elastic bodies, forming therefore a crack between the inclusions and the elastic matrix. Nonlinear boundary conditions are considered at the crack faces to prevent mutual penetration between the crack faces. The inclusions have a joint point. We present both differential formulation in the form of a boundary value problem and a variational formulation in the form of a minimization problem for an energy functional on a convex set of admissible displacements. The unique solvability of the problem is substantiated. Equivalence of differential and variational statements is shown. Passage to the limit is investigated as the rigidity parameter of the elastic inclusion goes to infinity. The limit model is analyzed. Junction boundary conditions are found at the joint point for the considered problem as well as for the limit problem.
Keywords: Timoshenko inclusion, semi-rigid inclusion, elastic body, crack, nonlinear boundary conditions.
@article{SVFU_2018_25_1_a6,
     author = {A. M. Khludnev and T. S. Popova},
     title = {On junction problem for elastic {Timoshenko} inclusion and semi-rigid inclusion},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {73--89},
     year = {2018},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/}
}
TY  - JOUR
AU  - A. M. Khludnev
AU  - T. S. Popova
TI  - On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 73
EP  - 89
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/
LA  - ru
ID  - SVFU_2018_25_1_a6
ER  - 
%0 Journal Article
%A A. M. Khludnev
%A T. S. Popova
%T On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion
%J Matematičeskie zametki SVFU
%D 2018
%P 73-89
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/
%G ru
%F SVFU_2018_25_1_a6
A. M. Khludnev; T. S. Popova. On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 73-89. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/

[1] Khludnev A. M., Negri M., “Crack on the boundary of a thin elastic inclusion inside an elastic body”, Z. Angew. Math. Mech., 92:5 (2012), 341–354 | DOI | MR | Zbl

[2] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[3] Khludnev A. M., Leugering G. R., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl

[4] Khludnev A. M., Leugering G. R., “On Timoshenko thin elastic inclusions inside elastic bodies”, Mathematics and Mechanics of Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[5] Khludnev A. M., “Optimal control of inclusions in an elastic body crossing the external boundary”, Sib. Zh. Ind. Mat., 18:4 (2015), 75–87 | Zbl

[6] Morozov N. F., Mathematical Questions of the Crack Theory, Nauka, Moscow, 1984

[7] Khludnev A. M., “Singular invariant integrals for elastic body with delaminated thin elastic inclusion”, Quart. Appl. Math., 72:4 (2014), 719–730 | DOI | MR | Zbl

[8] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[9] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT Press, Southampton; Boston, 2000

[10] Khludnev A. M., Problems of Elasticity Theory in Nonsmooth Domains, Fizmatlit, Moscow, 2010

[11] Kovtunenko V. A., “Invariant energy integrals for the nonlinear crack problem with possible contact of the crack surfaces”, J. Appl. Math. Mech., 67:1 (2003), 99–110 | DOI | MR | Zbl

[12] Kovtunenko V. A., “Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration”, IMA J. Appl. Math., 71:5 (2006), 635–657 | DOI | MR | Zbl

[13] Knees D., Schroder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Methods Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl

[14] Rudoy E. M., “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR

[15] Rudoy E. M., “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Math. Mech., 75:6 (2011), 731–738 | DOI | MR | MR

[16] Khludnev A. M., “The problem for a crack on the border of a rigid inclusion in a elastic plate”, Izv. Akad. Nauk, Mekh. Tvyord. Tela, 2010, no. 5, 98–110

[17] Lazarev N. P., “The equilibrium problem for a Timoshenko-type shallow shell containing a through crack”, J. Appl. Ind. Math., 7:1 (2013), 78–88 | DOI | MR | Zbl

[18] Khludnev A. M., “On the equilibrium of a two-layer elastic body with a crack”, J. Appl. Ind. Math., 7:3 (2013), 370–379 | DOI | MR | Zbl

[19] Shcherbakov V. V., “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl

[20] Shcherbakov V. V., “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | MR

[21] Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl

[22] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl

[23] Rudoy E. M., Khludnev A. M., “Unilateral contact of a plate with a thin elastic obstacle”, Sib. Zh. Ind. Mat., 12:2 (2009), 120–130 | MR | Zbl

[24] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[25] Bessoud A.-L., Krasucki F., Serpilli M., “Plate-like and shell-like inclusions with high rigidity”, Compt. Rend. Math., 346 (2008), 697–702 | DOI | MR | Zbl

[26] Bessoud A.-L., Krasucki F., Michaille G. Multi-materials with strong interface: Variational modelings, Asymptotic Analysis, 61:1 (2009), 1–19 | MR | Zbl

[27] Pasternak I. M., “Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions”, J. Math. Sci., 186:1 (2012), 31–47 | DOI | MR

[28] Vynnytska L., Savula Y., “Mathematical modeling and numerical analysis of elastic body with thin inclusion”, Comput. Mech., 50:5 (2004), 533–542 | DOI | MR

[29] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford Univ. Press, New York, 1999 | MR

[30] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pure Appl., 68 (1989), 365–397 | MR | Zbl

[31] Titeux I., Sanchez-Palencia E., “Junction of thin plate”, Europ. J. Mech. A/Solids, 19:3 (2000), 377–400 | DOI | MR | Zbl

[32] Gaudiello A., Zappale E., “Junction in a thin multidomain for a forth order problem”, Math. Models Methods Appl. Sci., 16:12 (2006), 1887–1918 | DOI | MR | Zbl

[33] Gaudiello A., Zappale E., “A model of joined beams as limit of a 2D plate”, J. Elasticity, 103:2 (2011), 205–233 | DOI | MR | Zbl

[34] Ciarlet P. G., Le Dret H., Nzengwa R., “Junctions between three dimensional and two dimensional linearly elastic structures”, J. Math. Pures Appl., 6 (1989), 261–295 | MR

[35] Faella L., Khludnev A. M., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 737– 750 | DOI | MR | Zbl

[36] Khludnev A. M., Popova T. S., “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406– 1417 | MR

[37] Khludnev A. M., Popova T. S., “Junction problem for rigid and semi-rigid inclusions in elastic bodies”, Arch. Appl. Mech., 86:9 (2016), 1565–1577 | DOI | MR

[38] Khludnev A. M., Popova T. S., “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR | Zbl

[39] Grigolyuk E. I., Selezov I. T., Mekhanika Tvyordyh Deformiruemyh Tel. V. 5. Neklassicheskie Teorii Kolebaniy Sterzhney, Plastin i Obolochek, v. 5, Nauka, Moscow, 1973