@article{SVFU_2018_25_1_a6,
author = {A. M. Khludnev and T. S. Popova},
title = {On junction problem for elastic {Timoshenko} inclusion and semi-rigid inclusion},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {73--89},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/}
}
A. M. Khludnev; T. S. Popova. On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 73-89. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a6/
[1] Khludnev A. M., Negri M., “Crack on the boundary of a thin elastic inclusion inside an elastic body”, Z. Angew. Math. Mech., 92:5 (2012), 341–354 | DOI | MR | Zbl
[2] Itou H., Khludnev A. M., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl
[3] Khludnev A. M., Leugering G. R., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl
[4] Khludnev A. M., Leugering G. R., “On Timoshenko thin elastic inclusions inside elastic bodies”, Mathematics and Mechanics of Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[5] Khludnev A. M., “Optimal control of inclusions in an elastic body crossing the external boundary”, Sib. Zh. Ind. Mat., 18:4 (2015), 75–87 | Zbl
[6] Morozov N. F., Mathematical Questions of the Crack Theory, Nauka, Moscow, 1984
[7] Khludnev A. M., “Singular invariant integrals for elastic body with delaminated thin elastic inclusion”, Quart. Appl. Math., 72:4 (2014), 719–730 | DOI | MR | Zbl
[8] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[9] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT Press, Southampton; Boston, 2000
[10] Khludnev A. M., Problems of Elasticity Theory in Nonsmooth Domains, Fizmatlit, Moscow, 2010
[11] Kovtunenko V. A., “Invariant energy integrals for the nonlinear crack problem with possible contact of the crack surfaces”, J. Appl. Math. Mech., 67:1 (2003), 99–110 | DOI | MR | Zbl
[12] Kovtunenko V. A., “Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration”, IMA J. Appl. Math., 71:5 (2006), 635–657 | DOI | MR | Zbl
[13] Knees D., Schroder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Methods Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[14] Rudoy E. M., “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511–529 | DOI | MR
[15] Rudoy E. M., “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Math. Mech., 75:6 (2011), 731–738 | DOI | MR | MR
[16] Khludnev A. M., “The problem for a crack on the border of a rigid inclusion in a elastic plate”, Izv. Akad. Nauk, Mekh. Tvyord. Tela, 2010, no. 5, 98–110
[17] Lazarev N. P., “The equilibrium problem for a Timoshenko-type shallow shell containing a through crack”, J. Appl. Ind. Math., 7:1 (2013), 78–88 | DOI | MR | Zbl
[18] Khludnev A. M., “On the equilibrium of a two-layer elastic body with a crack”, J. Appl. Ind. Math., 7:3 (2013), 370–379 | DOI | MR | Zbl
[19] Shcherbakov V. V., “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl
[20] Shcherbakov V. V., “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | MR
[21] Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[22] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl
[23] Rudoy E. M., Khludnev A. M., “Unilateral contact of a plate with a thin elastic obstacle”, Sib. Zh. Ind. Mat., 12:2 (2009), 120–130 | MR | Zbl
[24] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[25] Bessoud A.-L., Krasucki F., Serpilli M., “Plate-like and shell-like inclusions with high rigidity”, Compt. Rend. Math., 346 (2008), 697–702 | DOI | MR | Zbl
[26] Bessoud A.-L., Krasucki F., Michaille G. Multi-materials with strong interface: Variational modelings, Asymptotic Analysis, 61:1 (2009), 1–19 | MR | Zbl
[27] Pasternak I. M., “Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions”, J. Math. Sci., 186:1 (2012), 31–47 | DOI | MR
[28] Vynnytska L., Savula Y., “Mathematical modeling and numerical analysis of elastic body with thin inclusion”, Comput. Mech., 50:5 (2004), 533–542 | DOI | MR
[29] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford Univ. Press, New York, 1999 | MR
[30] Le Dret H., “Modeling of the junction between two rods”, J. Math. Pure Appl., 68 (1989), 365–397 | MR | Zbl
[31] Titeux I., Sanchez-Palencia E., “Junction of thin plate”, Europ. J. Mech. A/Solids, 19:3 (2000), 377–400 | DOI | MR | Zbl
[32] Gaudiello A., Zappale E., “Junction in a thin multidomain for a forth order problem”, Math. Models Methods Appl. Sci., 16:12 (2006), 1887–1918 | DOI | MR | Zbl
[33] Gaudiello A., Zappale E., “A model of joined beams as limit of a 2D plate”, J. Elasticity, 103:2 (2011), 205–233 | DOI | MR | Zbl
[34] Ciarlet P. G., Le Dret H., Nzengwa R., “Junctions between three dimensional and two dimensional linearly elastic structures”, J. Math. Pures Appl., 6 (1989), 261–295 | MR
[35] Faella L., Khludnev A. M., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 737– 750 | DOI | MR | Zbl
[36] Khludnev A. M., Popova T. S., “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406– 1417 | MR
[37] Khludnev A. M., Popova T. S., “Junction problem for rigid and semi-rigid inclusions in elastic bodies”, Arch. Appl. Mech., 86:9 (2016), 1565–1577 | DOI | MR
[38] Khludnev A. M., Popova T. S., “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74:4 (2016), 705–718 | DOI | MR | Zbl
[39] Grigolyuk E. I., Selezov I. T., Mekhanika Tvyordyh Deformiruemyh Tel. V. 5. Neklassicheskie Teorii Kolebaniy Sterzhney, Plastin i Obolochek, v. 5, Nauka, Moscow, 1973