Mots-clés : evolution equation.
@article{SVFU_2018_25_1_a5,
author = {E. M. Streletskaya and V. E. Fedorov and A. Debbouche},
title = {The {Cauchy} problem for distributed order equations in {Banach} spaces},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {63--72},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a5/}
}
TY - JOUR AU - E. M. Streletskaya AU - V. E. Fedorov AU - A. Debbouche TI - The Cauchy problem for distributed order equations in Banach spaces JO - Matematičeskie zametki SVFU PY - 2018 SP - 63 EP - 72 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a5/ LA - ru ID - SVFU_2018_25_1_a5 ER -
E. M. Streletskaya; V. E. Fedorov; A. Debbouche. The Cauchy problem for distributed order equations in Banach spaces. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a5/
[1] Caputo M., “Mean fractional-order derivatives, differential equations and filters”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 41 (1995), 73–84 | MR | Zbl
[2] Caputo M., “Diffusion with space memory modelled with distributed order space fractional differential equations”, Ann. Geophys, 46:2 (2003), 223–234
[3] Umarov S., Gorenflo R., “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations”, Z. Anal. Anwend, 24 (2005), 449–466 | MR | Zbl
[4] Meerschaert M. M., Scheffler H.-P., “Stochastic model for ultraslow diffusion”, Stochastic Process. Appl., 116 (2006), 1215–1235 | DOI | MR | Zbl
[5] Atanackovió T. M., Oparnica L., Pilipovió S., “On a nonlinear distributed order fractional differential equation”, J. Math. Anal. Appl., 328 (2007), 590–608 | DOI | MR | Zbl
[6] Kochubei A. N., “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–280 | DOI | MR
[7] Jiao Z., Chen Y., Podlubny I., Distributed-order dynamic system. Stability, simulations, applications and perspectives, Springer-Verl., London, 2012 | MR
[8] Fedorov V. E., Debbouche A., “A class of degenerate fractional evolution systems in Banach spaces”, Differ. Equ., 49:12 (2013), 1569–1576 | DOI | MR | Zbl
[9] Fedorov V. E., Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russ. Math., 2015, no. 1, 60–70 | DOI | MR | Zbl
[10] Gordievskikh D. M., Fedorov V. E., “Solutions of initial boundary value problems for some degenerate equations of systems of time-fractional order”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 12 (2015), 12–22 | Zbl
[11] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differ. Equ., 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl
[12] Fedorov V. E., Nazhimov R. R., Gordievskikh D. M., “Initial value problem for a class of fractional order inhomogeneous equations in Banach spaces”, AIP Conf. Proc., 1759 (2016), 020008 | DOI
[13] Fedorov V. E., Romanova E. A., Debbouche A., “Analytic in a sector resolving families of operators for degenerate evolution fractional equations”, J. Math. Sci., 228:4 (2018), 380–394 | DOI | MR | Zbl
[14] Kostic̀ M., Fedorov V. E., Ufa Math. J., 8:4 (2016), 98–110 | DOI | MR
[15] Romanova E. A., Fedorov V. E., “Resolving operators of a linear degenrate evolution equation with Caputo derivative. The sectorial case”, Mat. Zamet. SVFU, 23:4 (2016), 58–72 | Zbl
[16] Fedorov V. E., Romanova E. A., “On analytic in a sector resolving families of operators for strongly degenerate evolution equations of highest and fractional orders”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 137 (2017), 82–96
[17] Fedorov V. E., Gordievskikh D. M., Baybulatova G. D., “Controllability of a class of weakly degenerate fractional order evolution equations”, AIP Conf. Proc., 1907 (2017), 020009 | DOI
[18] Fedorov V. E., Plekhanova M. V., Nazhimov R. R., “Degenerate linear evolution equations with the Riemann–Liouville fractional derivative”, Sib. Math. J., 59:1 (2018), 136–146 | DOI | Zbl
[19] Gordievskikh D. M., Fedorov V. E., Turov M. M., “Infinite-dimensional and finitedimensional $\epsilon$-controllability for a class of fractional order degenearte evolution equations”, Chelyab. Fiz. Mat. Zh., 3:1 (2018), 5–26 | MR
[20] Gerasimov A. N., “Generalization of linear deformation laws and their applications to problems of internal friction”, Prikl. Mat. Mekh., 12 (1948), 529–539
[21] Caputo M., “Lineal model of dissipation whose Q is almost frequancy independent. II”, Geophys. J. Roy. Astron. Soc., 13 (1967), 529–539 | DOI
[22] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Monogr. Math., 96, Springer-Verl., Basel, 2011 | MR