On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack
Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 38-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problem for an transversely isotropic elastic plate (Timoshenko model) with an inclined crack is studied. It is supposed that the crack does not touch the external boundary. For initial state, we assume that opposite crack faces are in contact with each other on a frictionless crack surface. Herewith, the crack is described with the use of a surface satisfying certain assumptions. On the crack curve defining the crack in the middle plane, we impose a nonlinear boundary condition as an inequality describing the nonpenetration of the opposite crack faces. It is assumed that on the exterior boundary of the cracked elastic plate the homogeneous Dirichlet boundary conditions are prescribed. We establish additional smoothness of the solution in comparison with that given in the variational statement. We prove that the solution functions are infinitely smooth under additional assumptions on the function of external loads and the functions of displacements near the curve describing the inclined crack.
Keywords: variational inequality, Timoshenko plate, crack, nonpenetration condition, solution regularity.
@article{SVFU_2018_25_1_a3,
     author = {N. P. Lazarev and I. Hiromichi and P. V. Sivtsev and I. M. Tikhonova},
     title = {On the solution regularity of an equilibrium problem for the {Timoshenko} plate having an inclined crack},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {38--49},
     year = {2018},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - I. Hiromichi
AU  - P. V. Sivtsev
AU  - I. M. Tikhonova
TI  - On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 38
EP  - 49
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/
LA  - ru
ID  - SVFU_2018_25_1_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A I. Hiromichi
%A P. V. Sivtsev
%A I. M. Tikhonova
%T On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack
%J Matematičeskie zametki SVFU
%D 2018
%P 38-49
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/
%G ru
%F SVFU_2018_25_1_a3
N. P. Lazarev; I. Hiromichi; P. V. Sivtsev; I. M. Tikhonova. On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 38-49. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/

[1] Cherepanov G. P., Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979 | Zbl

[2] Rabotnov Yu. N., Mechanics of a Deformable Rigid Body, Nauka, Moscow, 1988

[3] Levin V. A., Morozov E. M., Matvienko Yu. G., Selected Nonlinear Problems in Mechanics of Fracture, Fizmatlit, Moscow, 2004

[4] Slepyan L. I., Mechanics of Cracks, Sudostroenie, Leningrad, 1981

[5] Morozov N. F., Mathematical problems of the theory of cracks, Nauka, Moscow, 1984

[6] Khludnev A. M., “Equilibrium problem of an elastic plate with an oblique crack”, J. Appl. Mech. Tech. Phys., 38:5 (1997), 757–761 | DOI | MR | Zbl

[7] Kovtunenko V. A., Leont'ev A. N., Khludnev A. M., “Equilibrium problem of a plate with an oblique cut”, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 | DOI | MR | Zbl

[8] Khludnev A. M., Elasticity Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010

[9] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR

[10] Lazarev N. P., “The equilibrium problem for a Timoshenko-type shallow shell containing a through crac”, J. Appl. Ind. Math., 7:1 (2013), 58–69 | DOI | MR | Zbl

[11] Lazarev N. P., “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011), 32–43 | MR | Zbl

[12] Rudoy E. M., “Griffith's formula and Cherepanov–Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511-529 | DOI | MR

[13] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl

[14] Neustroeva N. V., “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, J. Appl. Ind. Math., 9:3 (2015), 402–411 | DOI | MR | Zbl

[15] Shcherbakov V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl

[16] Lazarev N. P., “Equilibrium problem for a Timoshenko plate with an oblique crack”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–671 | DOI | MR | Zbl

[17] Lazarev N. P., “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numer. Anal. Appl., 4:4 (2011), 309–318 | DOI | MR | Zbl

[18] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl

[19] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl

[20] Pelekh B. L., Shell Theory with Finite Shear Stiffness, Naukova Dumka, Kiev, 1973

[21] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978 | MR

[22] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problems and Applications, v. 1, Springer-Verlag, Berlin, New York, 1972 | MR

[23] Khludnev A. M., Sokolowski J., Modelling and control in solid mechanics, Birkhäuser-Verl., Basel, Boston, Berlin, 1997 | MR | Zbl