@article{SVFU_2018_25_1_a3,
author = {N. P. Lazarev and I. Hiromichi and P. V. Sivtsev and I. M. Tikhonova},
title = {On the solution regularity of an equilibrium problem for the {Timoshenko} plate having an inclined crack},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {38--49},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/}
}
TY - JOUR AU - N. P. Lazarev AU - I. Hiromichi AU - P. V. Sivtsev AU - I. M. Tikhonova TI - On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack JO - Matematičeskie zametki SVFU PY - 2018 SP - 38 EP - 49 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/ LA - ru ID - SVFU_2018_25_1_a3 ER -
%0 Journal Article %A N. P. Lazarev %A I. Hiromichi %A P. V. Sivtsev %A I. M. Tikhonova %T On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack %J Matematičeskie zametki SVFU %D 2018 %P 38-49 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/ %G ru %F SVFU_2018_25_1_a3
N. P. Lazarev; I. Hiromichi; P. V. Sivtsev; I. M. Tikhonova. On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 38-49. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a3/
[1] Cherepanov G. P., Mechanics of Brittle Fracture, McGraw-Hill, New York, 1979 | Zbl
[2] Rabotnov Yu. N., Mechanics of a Deformable Rigid Body, Nauka, Moscow, 1988
[3] Levin V. A., Morozov E. M., Matvienko Yu. G., Selected Nonlinear Problems in Mechanics of Fracture, Fizmatlit, Moscow, 2004
[4] Slepyan L. I., Mechanics of Cracks, Sudostroenie, Leningrad, 1981
[5] Morozov N. F., Mathematical problems of the theory of cracks, Nauka, Moscow, 1984
[6] Khludnev A. M., “Equilibrium problem of an elastic plate with an oblique crack”, J. Appl. Mech. Tech. Phys., 38:5 (1997), 757–761 | DOI | MR | Zbl
[7] Kovtunenko V. A., Leont'ev A. N., Khludnev A. M., “Equilibrium problem of a plate with an oblique cut”, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 | DOI | MR | Zbl
[8] Khludnev A. M., Elasticity Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010
[9] Lazarev N. P., Rudoy E. M., “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR
[10] Lazarev N. P., “The equilibrium problem for a Timoshenko-type shallow shell containing a through crac”, J. Appl. Ind. Math., 7:1 (2013), 58–69 | DOI | MR | Zbl
[11] Lazarev N. P., “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011), 32–43 | MR | Zbl
[12] Rudoy E. M., “Griffith's formula and Cherepanov–Rice's integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186:3 (2012), 511-529 | DOI | MR
[13] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl
[14] Neustroeva N. V., “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, J. Appl. Ind. Math., 9:3 (2015), 402–411 | DOI | MR | Zbl
[15] Shcherbakov V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl
[16] Lazarev N. P., “Equilibrium problem for a Timoshenko plate with an oblique crack”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–671 | DOI | MR | Zbl
[17] Lazarev N. P., “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Numer. Anal. Appl., 4:4 (2011), 309–318 | DOI | MR | Zbl
[18] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl
[19] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl
[20] Pelekh B. L., Shell Theory with Finite Shear Stiffness, Naukova Dumka, Kiev, 1973
[21] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978 | MR
[22] Lions J. L., Magenes E., Nonhomogeneous Boundary Value Problems and Applications, v. 1, Springer-Verlag, Berlin, New York, 1972 | MR
[23] Khludnev A. M., Sokolowski J., Modelling and control in solid mechanics, Birkhäuser-Verl., Basel, Boston, Berlin, 1997 | MR | Zbl