@article{SVFU_2018_25_1_a2,
author = {E. V. Karachanskaya and A. P. Petrova},
title = {Modeling of the programmed control with probability 1 for some financial tasks},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {25--37},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/}
}
TY - JOUR AU - E. V. Karachanskaya AU - A. P. Petrova TI - Modeling of the programmed control with probability 1 for some financial tasks JO - Matematičeskie zametki SVFU PY - 2018 SP - 25 EP - 37 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/ LA - ru ID - SVFU_2018_25_1_a2 ER -
E. V. Karachanskaya; A. P. Petrova. Modeling of the programmed control with probability 1 for some financial tasks. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/
[1] Dubko V., “Open dynamic systems and its simulation”, Vestn. Dal'nevost. Otdel. RAN, 1993, no. 4–5, 55–64
[2] Shiryaev A. N., Essentials of Stochastic Finance. Facts, Models, Theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ. Co. Inc., River Edge, NJ, 1999 | DOI | MR
[3] Kohlmann, M., Siyuan, L., Xiong D., “A Generalized Itô-Ventzell formula to derive forward utility models in a jump market”, Stochastic Anal. Appl., 31:4 (2013), 632– 662 | DOI | MR | Zbl
[4] Delong L., Backward stochastic differential equations with jumps and their actuarial and financial applications, Springer-Verl., London, 2013 | MR | Zbl
[5] Kolmanovsky V. B., “Control problems with incomplete information”, Soros Edu. J., 1999, no. 4, 122–127
[6] Khrustalev M. M., Rumyantsev D. S., “Optimizing quasilinear stochastic dynamical systems with complex structure”, Autom. Remote Control, 72:10 (2011), 2147–2160 | DOI | MR | Zbl
[7] Khrustalev M. M., Rumyantsev D. S., Tsar'kov K. A., “Optimization of quasilinear stochastic control-nonlinear diffusion systems”, Autom. Remote Control, 78:6 (2017), 1028–1045 | DOI | MR | Zbl
[8] Balescu R., Equilibrium and Non-Equilibrium Statistical Mechanics, John Wiley and Sons, Chichester, New York, Sydney, Toronto, 1975 | MR
[9] Klimontovich Yu. L., “Nonlinear Brownian motion”, Uspekhi Fiz. Nauk, 164:8 (1994), 811–844 | DOI
[10] Dubko V. A., “On modeling of subsystem dynamics in multi-element interacting systems and constructing a stochastic self-diffustion equation”, Vestn. Priamursk. Gos. Univ., 2016, no. 1, 100–104
[11] Dubko V. A., Questions about Theory and Applications of the Stochastic Differential Equations, Dal'nauka, Vladivostok, 1989 | MR
[12] Dubko V. A., Karachanskaya E. V., Special Sections of the Theory of Stochastic Differential Equations, Izdat. Dal'nevost. Natsion. Univ., Khabarovsk, 2013
[13] Karachanskaya E. V., “Construction of programmed controls for a dynamic system based on the set of its first integrals”, J. Math. Sci., 199:5 (2014), 547–555 | DOI | MR | Zbl
[14] Karachanskaya E. V., Integral Invariants of Stochastic Systems and Programmed Control with Probability 1, Izdat. Dal'nevost. Natsion. Univ., Khabarovsk, 2015
[15] Dubko V. A., Karachanskaya E. V., “Stochastic first integrals, kernel functions for integral invariants and the Kolmogorov equations”, Dal'nevost. Mat. Zh., 14:2 (2014), 200– 216 | MR | Zbl
[16] Karachanskaya E. V., “Construction of the set of differential equations with a given set of first integrals”, Vestn. Dal'nevost. Natsion. Univ., 2011, no. 3, 47–56
[17] Karachanskaya E. V., “The generalized Itô–Wenttsel formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral”, Sib. Adv. Math., 25:3 (2015), 191–205 | DOI | MR | Zbl
[18] Averina T., Karachanskaya E., Rybakov K., “Statistical modelling of random processes with invariants”, Proc. 2017 Intern. Multi-Conf. on Engineering, Computer and Information Sciences (Sep. 18-22 Novosibirsk, Akademgorodok, Russia), 2017, 34–37
[19] Averina, T.A., Karachanskaya E. V., Rybakov K. A., “Modeling and analysis of linear invariant stochastic systems”, Differ. Equ. Control Processes, Online J., 2018, no. 1, 54–76 | MR | Zbl