Modeling of the programmed control with probability 1 for some financial tasks
Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 25-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The description of the dynamics of some financial events can be related to Itô stochastic differential equations (SDE). In this paper, we consider a financial model affected by random disturbances which take the form of Wiener and Poisson perturbations. The construction of the programmed control with probability 1 (PCP1) is based on the concept of first integral for stochastic dynamic systems of diffusion type with jumps which are described by the Itô equations. Two types of financial models are considered as examples of the construction of PCP1: the investment portfolio model (diffusion model) and the interest rate model (diffusion with jumps). The given examples are accompanied by numerical modeling.
Keywords: programmed control with probability 1, stochastic Itô's equation with jumps, first integral of system of the Itô equations, investment portfolio model, interest rate model.
@article{SVFU_2018_25_1_a2,
     author = {E. V. Karachanskaya and A. P. Petrova},
     title = {Modeling of the programmed control with probability 1 for some financial tasks},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {25--37},
     year = {2018},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/}
}
TY  - JOUR
AU  - E. V. Karachanskaya
AU  - A. P. Petrova
TI  - Modeling of the programmed control with probability 1 for some financial tasks
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 25
EP  - 37
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/
LA  - ru
ID  - SVFU_2018_25_1_a2
ER  - 
%0 Journal Article
%A E. V. Karachanskaya
%A A. P. Petrova
%T Modeling of the programmed control with probability 1 for some financial tasks
%J Matematičeskie zametki SVFU
%D 2018
%P 25-37
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/
%G ru
%F SVFU_2018_25_1_a2
E. V. Karachanskaya; A. P. Petrova. Modeling of the programmed control with probability 1 for some financial tasks. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a2/

[1] Dubko V., “Open dynamic systems and its simulation”, Vestn. Dal'nevost. Otdel. RAN, 1993, no. 4–5, 55–64

[2] Shiryaev A. N., Essentials of Stochastic Finance. Facts, Models, Theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ. Co. Inc., River Edge, NJ, 1999 | DOI | MR

[3] Kohlmann, M., Siyuan, L., Xiong D., “A Generalized Itô-Ventzell formula to derive forward utility models in a jump market”, Stochastic Anal. Appl., 31:4 (2013), 632– 662 | DOI | MR | Zbl

[4] Delong L., Backward stochastic differential equations with jumps and their actuarial and financial applications, Springer-Verl., London, 2013 | MR | Zbl

[5] Kolmanovsky V. B., “Control problems with incomplete information”, Soros Edu. J., 1999, no. 4, 122–127

[6] Khrustalev M. M., Rumyantsev D. S., “Optimizing quasilinear stochastic dynamical systems with complex structure”, Autom. Remote Control, 72:10 (2011), 2147–2160 | DOI | MR | Zbl

[7] Khrustalev M. M., Rumyantsev D. S., Tsar'kov K. A., “Optimization of quasilinear stochastic control-nonlinear diffusion systems”, Autom. Remote Control, 78:6 (2017), 1028–1045 | DOI | MR | Zbl

[8] Balescu R., Equilibrium and Non-Equilibrium Statistical Mechanics, John Wiley and Sons, Chichester, New York, Sydney, Toronto, 1975 | MR

[9] Klimontovich Yu. L., “Nonlinear Brownian motion”, Uspekhi Fiz. Nauk, 164:8 (1994), 811–844 | DOI

[10] Dubko V. A., “On modeling of subsystem dynamics in multi-element interacting systems and constructing a stochastic self-diffustion equation”, Vestn. Priamursk. Gos. Univ., 2016, no. 1, 100–104

[11] Dubko V. A., Questions about Theory and Applications of the Stochastic Differential Equations, Dal'nauka, Vladivostok, 1989 | MR

[12] Dubko V. A., Karachanskaya E. V., Special Sections of the Theory of Stochastic Differential Equations, Izdat. Dal'nevost. Natsion. Univ., Khabarovsk, 2013

[13] Karachanskaya E. V., “Construction of programmed controls for a dynamic system based on the set of its first integrals”, J. Math. Sci., 199:5 (2014), 547–555 | DOI | MR | Zbl

[14] Karachanskaya E. V., Integral Invariants of Stochastic Systems and Programmed Control with Probability 1, Izdat. Dal'nevost. Natsion. Univ., Khabarovsk, 2015

[15] Dubko V. A., Karachanskaya E. V., “Stochastic first integrals, kernel functions for integral invariants and the Kolmogorov equations”, Dal'nevost. Mat. Zh., 14:2 (2014), 200– 216 | MR | Zbl

[16] Karachanskaya E. V., “Construction of the set of differential equations with a given set of first integrals”, Vestn. Dal'nevost. Natsion. Univ., 2011, no. 3, 47–56

[17] Karachanskaya E. V., “The generalized Itô–Wenttsel formula in the case of a noncentered Poisson measure, a stochastic first integral, and a first integral”, Sib. Adv. Math., 25:3 (2015), 191–205 | DOI | MR | Zbl

[18] Averina T., Karachanskaya E., Rybakov K., “Statistical modelling of random processes with invariants”, Proc. 2017 Intern. Multi-Conf. on Engineering, Computer and Information Sciences (Sep. 18-22 Novosibirsk, Akademgorodok, Russia), 2017, 34–37

[19] Averina, T.A., Karachanskaya E. V., Rybakov K. A., “Modeling and analysis of linear invariant stochastic systems”, Differ. Equ. Control Processes, Online J., 2018, no. 1, 54–76 | MR | Zbl