@article{SVFU_2018_25_1_a1,
author = {I. E. Egorov and E. S. Efimova and I. M. Tikhonova},
title = {On {Fredholm} solvability of first boundary value problem for mixed-type second-order equation with spectral parameter},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {15--24},
year = {2018},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/}
}
TY - JOUR AU - I. E. Egorov AU - E. S. Efimova AU - I. M. Tikhonova TI - On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter JO - Matematičeskie zametki SVFU PY - 2018 SP - 15 EP - 24 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/ LA - ru ID - SVFU_2018_25_1_a1 ER -
%0 Journal Article %A I. E. Egorov %A E. S. Efimova %A I. M. Tikhonova %T On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter %J Matematičeskie zametki SVFU %D 2018 %P 15-24 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/ %G ru %F SVFU_2018_25_1_a1
I. E. Egorov; E. S. Efimova; I. M. Tikhonova. On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/
[1] Moiseev E. I., Equations of mixed type with spectral parameter, Izdat. Mosc. Univ., Moscow, 1988
[2] Kuz'min A. G., Nonclassical equations of mixed type and their application to gas dynamics, Izdat. Leningr. Univ., Leningrad, 1990
[3] Egorov I. E., Fedorov V. E., Nonclassical higher-order equations in mathematical physics, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 1995
[4] Salakhitdinov M. S. and Urinov A. N., Boundary value problems for equations of mixed type with spectral parameter, Izdat. FAN, Tashkent, 1997 | MR
[5] Salakhitdinov M. S., Urinov A. N., To spectral theory of equations of mixed type, Izdat. MUMTOZ SO'Z, Tashkent, 2010
[6] Egorov I. E., “On Fredholm solvability of boundary value problem for mixed-type equation”, Mat. Zamet. YaGU, 18:1 (2011), 55–64 | Zbl
[7] Egorov I. E., Zakharova T. I., “On Fredholm property of boundary value problem for mixed-type equations”, Mat. Zamet. YaGU, 20:1 (2013), 20–26
[8] Vragov V. N., “On the theory of boundary value problems for equations of mixed type in space”, Differ. Uravn., 13:6 (1977), 1098–1105 | MR | Zbl
[9] Egorov I. E., “A boundary value problem for a mixed type equation with a spectral parameter”, Math. Notes of NEFU, 21:1 (2014), 9–15 | Zbl
[10] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR
[11] Kalmenov T. Sh., “On the spectrum of the Tricomi problem for the Lavrent'ev–Bitsadze equation”, Differ. Uravn., 13:8 (1977), 1418–1425 | MR | Zbl
[12] Egorov I. E., “On the Fredholm property of Vragov boundary value problem for mixed-type equations of even order”, Mat. Zamet. SVFU, 23:4 (2016), 19–28
[13] Egorov I. E., “On Fredholm solvability of the first boundary value problem for mixed-type equations of even order”, Mat. Zamet. YaGU, 20:2 (2013), 48–56 | Zbl
[14] Kapustin N. Yu., Moiseev E. I., “On the convergence of spectral expansions of functions from the Holder class for two problems with spectral parameter in the boundary condition”, Differ. Uravn., 36:8 (2000), 1069–1074 | MR | Zbl
[15] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, Moscow, 1973