On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter
Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 15-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the first boundary problem for the mixed-type second-order equation with a spectral parameter in a cylindrical domain in $R^{n+1}$. Previously, for the mixed-type second-order equations some results were received only in two-dimensional domains. V. N. Vragov was the first to propose a well-posed statement of a boundary problem for the mixed-type equations. One of the well-posedness conditions is non-negativity of the spectral parameter. Here we analyze the case of complex spectral parameter and receive a priori estimates under certain conditions, using which an existence and uniqueness theorem is proved for the first boundary problem in the energy class. Also, we obtain sufficient conditions for the Fredholm solvability in the energy class.
Keywords: mixed-type equation, a priori estimate, inequality, equality, orthogonality conditions.
@article{SVFU_2018_25_1_a1,
     author = {I. E. Egorov and E. S. Efimova and I. M. Tikhonova},
     title = {On {Fredholm} solvability of first boundary value problem for mixed-type second-order equation with spectral parameter},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {15--24},
     year = {2018},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/}
}
TY  - JOUR
AU  - I. E. Egorov
AU  - E. S. Efimova
AU  - I. M. Tikhonova
TI  - On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter
JO  - Matematičeskie zametki SVFU
PY  - 2018
SP  - 15
EP  - 24
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/
LA  - ru
ID  - SVFU_2018_25_1_a1
ER  - 
%0 Journal Article
%A I. E. Egorov
%A E. S. Efimova
%A I. M. Tikhonova
%T On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter
%J Matematičeskie zametki SVFU
%D 2018
%P 15-24
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/
%G ru
%F SVFU_2018_25_1_a1
I. E. Egorov; E. S. Efimova; I. M. Tikhonova. On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter. Matematičeskie zametki SVFU, Tome 25 (2018) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/SVFU_2018_25_1_a1/

[1] Moiseev E. I., Equations of mixed type with spectral parameter, Izdat. Mosc. Univ., Moscow, 1988

[2] Kuz'min A. G., Nonclassical equations of mixed type and their application to gas dynamics, Izdat. Leningr. Univ., Leningrad, 1990

[3] Egorov I. E., Fedorov V. E., Nonclassical higher-order equations in mathematical physics, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 1995

[4] Salakhitdinov M. S. and Urinov A. N., Boundary value problems for equations of mixed type with spectral parameter, Izdat. FAN, Tashkent, 1997 | MR

[5] Salakhitdinov M. S., Urinov A. N., To spectral theory of equations of mixed type, Izdat. MUMTOZ SO'Z, Tashkent, 2010

[6] Egorov I. E., “On Fredholm solvability of boundary value problem for mixed-type equation”, Mat. Zamet. YaGU, 18:1 (2011), 55–64 | Zbl

[7] Egorov I. E., Zakharova T. I., “On Fredholm property of boundary value problem for mixed-type equations”, Mat. Zamet. YaGU, 20:1 (2013), 20–26

[8] Vragov V. N., “On the theory of boundary value problems for equations of mixed type in space”, Differ. Uravn., 13:6 (1977), 1098–1105 | MR | Zbl

[9] Egorov I. E., “A boundary value problem for a mixed type equation with a spectral parameter”, Math. Notes of NEFU, 21:1 (2014), 9–15 | Zbl

[10] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR

[11] Kalmenov T. Sh., “On the spectrum of the Tricomi problem for the Lavrent'ev–Bitsadze equation”, Differ. Uravn., 13:8 (1977), 1418–1425 | MR | Zbl

[12] Egorov I. E., “On the Fredholm property of Vragov boundary value problem for mixed-type equations of even order”, Mat. Zamet. SVFU, 23:4 (2016), 19–28

[13] Egorov I. E., “On Fredholm solvability of the first boundary value problem for mixed-type equations of even order”, Mat. Zamet. YaGU, 20:2 (2013), 48–56 | Zbl

[14] Kapustin N. Yu., Moiseev E. I., “On the convergence of spectral expansions of functions from the Holder class for two problems with spectral parameter in the boundary condition”, Differ. Uravn., 36:8 (2000), 1069–1074 | MR | Zbl

[15] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, Moscow, 1973