On solution to the simplest functional equation in curvilinear-band-type domain
Matematičeskie zametki SVFU, Tome 24 (2017) no. 4, pp. 87-95
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the functional equation $u(\xi + 1) - u(\xi) = d(\xi), \xi\in\Pi,$, in the region $\Pi\subset C$ of “curvilinear band” type. For sufficiently fast decreasing at infinity and holomorphic within the domain $\Pi$ functions $d(\xi)$ the existence of a holomorphic and bounded solution is shown, the uniqueness of the solutions is investigated. We also obtained precise estimates of the constructed solutions and its asymptotic behavior.
Keywords:
semihyperbolic maps, functional equations, analytic classification.
@article{SVFU_2017_24_4_a7,
author = {P. A. Shaikhullina},
title = {On solution to the simplest functional equation in curvilinear-band-type domain},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {87--95},
year = {2017},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a7/}
}
P. A. Shaikhullina. On solution to the simplest functional equation in curvilinear-band-type domain. Matematičeskie zametki SVFU, Tome 24 (2017) no. 4, pp. 87-95. http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a7/
[1] Shcherbakov A. A., “On germs of mappings analytically non-equivalent to their normal form”, Funkt. Anal. Pril., 16:2 (1982), 94–95 | MR
[2] Voronin S. M., Fomina P. A., “Sectorial normalization of semihyperbolic maps”, Vestn. Chelyabinsk. Gos. Univ., 2013, no. 16, 94–113
[3] Ueda T., “Local structure of analytic transformations of two complex variables I.”, J. Math. Kyoto Univ., 31:3 (1991), 695–711 | DOI | MR | Zbl
[4] Shaykhullina P. A., “Formal classification of typical germs of semihyperbolic mappings”, Mat. Zamet. SVFU, 22:4 (2015), 79–90 | Zbl