On correctness of nonlocal edge problem with constant coefficient for multidimensional second order equation of mixed type
Matematičeskie zametki SVFU, Tome 24 (2017) no. 4, pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate a nonlocal boundary-value problem for a second order multidimensional equation of mixed type covering classical elliptic, hyperbolic, and parabolic equations. We prove regular solvability of the posed nonlocal boundary-value problem in Sobolev spaces.
Keywords: second order multidimensional equation of mixed type, nonlocal boundary value problem, generalized solution, regular solution, uniqueness, smoothness of solution, method of $\varepsilon$-regularization, Galerkin method, a priori estimates.
Mots-clés : existence
@article{SVFU_2017_24_4_a1,
     author = {S. Z. Djamalov},
     title = {On correctness of nonlocal edge problem with constant coefficient for multidimensional second order equation of mixed type},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {17--27},
     year = {2017},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a1/}
}
TY  - JOUR
AU  - S. Z. Djamalov
TI  - On correctness of nonlocal edge problem with constant coefficient for multidimensional second order equation of mixed type
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 17
EP  - 27
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a1/
LA  - ru
ID  - SVFU_2017_24_4_a1
ER  - 
%0 Journal Article
%A S. Z. Djamalov
%T On correctness of nonlocal edge problem with constant coefficient for multidimensional second order equation of mixed type
%J Matematičeskie zametki SVFU
%D 2017
%P 17-27
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a1/
%G ru
%F SVFU_2017_24_4_a1
S. Z. Djamalov. On correctness of nonlocal edge problem with constant coefficient for multidimensional second order equation of mixed type. Matematičeskie zametki SVFU, Tome 24 (2017) no. 4, pp. 17-27. http://geodesic.mathdoc.fr/item/SVFU_2017_24_4_a1/

[1] Bitsadze A. V., Samarskii A. A., “About some protozoa generalizations of linear elliptic boundary-value problems”, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739–740 | Zbl

[2] Vragov V. N., Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk, Novosib. Gos. Univ., 1983 | MR

[3] Vragov V. N., “On the statement and solvability of boundary value problems for equations of mixed-composite type”, Mathematical Analysis and Related Questions of Mathematics, Inst. Mat. SO AN SSSR, Novosibirsk, 1978, 5–13

[4] Kozhanov A. I., Boundary Value Problems for Equations Mathematical Physics of Odd Order, Novosib. Gos. Univ., Novosibirsk, 1990 | MR

[5] Egorov I. E., Fedorov V. E., Higher-Order Nonclassical Equations of Mathematical Physics, Vychislit. Tsentr SO RAN, Novosibirsk, 1995 | MR

[6] Terekhov A. N., “Nonlocal boundary value problems for equations of the variable type”, Nonclassical Equations of Mathematical Physics, Inst. Mat. SO AN SSSR, Novosibirsk, 1985, 148–158

[7] Glazatov S. N., “Nonlocal boundary value problems for equations of mixed type in a rectangle”, Sib. Math. J., 26:6 (1985), 162–164 | MR | Zbl

[8] Jamalov S. Z., “On the correctness of non-local boundary problems for a multidimensional equation of mixed type”, Application of Methods of Functional Analysis to Nonclassical Equations of Mathematical Physics, 1989, 63–70, Inst. Mat. SO AN SSSR, Novosibirsk | MR

[9] Karatopraklieva M. G., “On a nonlocal edge problem for a mixed-type equation”, Differ. Equ., 27:1 (1991), 68–79 | MR | Zbl

[10] Jamalov S. Z., “On a nonlocal boundary-value problem for an equation of mixed type of the second kind of second order”, Uzbek. Mat. Zhurn., 1:1 (2014), 5–14 | MR

[11] Kuzmin A. G., Nonclassical Equations of Mixed Type and Their Applications to Gas Dynamics, Leningr. Gos. Univ., Leningrad, 1990 | MR

[12] Berezanskiy Yu. M., Expansion by Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965 | MR

[13] Ladyzhenskaya O. A., Boundary-Value Problems of Mathematical Physics, Nauka, Moscow, 1973 | MR