Simulation of filtration problems in fractured porous media with mixed finite element method (embedded fracture model)
Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 100-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a mathematical model of mixed dimension for modeling filtration problems in fractured porous media (built-in model of cracks). The mathematical model is described by a system of parabolic equations: d-dimensional for a porous medium and $(d-1)$-dimensional for a system of cracks. The system of equations is connected by specifying a special flow function. This model allows the use of grids for a matrix of a porous medium not dependent on the grid for cracks. For the numerical solution, an approximation using the mixed finite element method is constructed. The results of the numerical solution of the model problem that show the operability of the proposed method for modeling the flow in fractured porous media are presented.
Keywords: finite element method, built-in model of cracks, fractured medium, single phase liquid, liquid flow, law of conservation of mass, Darcy law.
@article{SVFU_2017_24_3_a8,
     author = {D. A. Spiridonov and M. V. Vasil'eva},
     title = {Simulation of filtration problems in fractured porous media with mixed finite element method (embedded fracture model)},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {100--110},
     year = {2017},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a8/}
}
TY  - JOUR
AU  - D. A. Spiridonov
AU  - M. V. Vasil'eva
TI  - Simulation of filtration problems in fractured porous media with mixed finite element method (embedded fracture model)
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 100
EP  - 110
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a8/
LA  - ru
ID  - SVFU_2017_24_3_a8
ER  - 
%0 Journal Article
%A D. A. Spiridonov
%A M. V. Vasil'eva
%T Simulation of filtration problems in fractured porous media with mixed finite element method (embedded fracture model)
%J Matematičeskie zametki SVFU
%D 2017
%P 100-110
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a8/
%G ru
%F SVFU_2017_24_3_a8
D. A. Spiridonov; M. V. Vasil'eva. Simulation of filtration problems in fractured porous media with mixed finite element method (embedded fracture model). Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 100-110. http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a8/

[1] Barenblatt G. I., Zheltov I. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | DOI | Zbl

[2] Arbogast T., Douglas, Jr. J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl

[3] Vasilyeva M. V., Vasil’ev V. I., Timofeeva T. S., “Numerical solution by the finite element method of diffusion and convective transport problems in strongly heterogeneous porous media”, Uch. Zap. Kazansk. Univ., Ser. Fiz. Mat. Nauki, 158:2 (2016), 243–261 | MR

[4] Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in poroelastic fractured media”, J. Comput. Phys., 353 (2018), 356–376 | DOI | MR | Zbl

[5] Vabishchevich P., Vasil'eva M., “Iterative solution of the pressure problem for the multiphase filtration”, Math. Model. Anal., 17:4 (2012), 532–548 | DOI | MR | Zbl

[6] Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Soc. Petrol. Eng. J., 3:3 (1963), 245–255 | DOI

[7] Li L., Lee S. H., “Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media”, SPE Reservoir Eval. Eng., 11:4 (2008), 750–758 | DOI

[8] Kazemi H., Merrill Jr L. S., Porterfield K. L., Zeman P. R., “Numerical simulation of water-oil flow in naturally fractured reservoirs”, Soc. Petrol. Eng. J., 16:6 (1976), 317–326 | DOI

[9] Tene M., Al Kobaisi M. S., Hajibeygi H., “Algebraic multiscale solver for flow in heterogeneous fractured porous media”, Pap. SPE Reservoir Simulation Symp., Houston, TX, Feb. 23-25, 2015, Soc. Petroleum Eng., 2015 | MR

[10] Li Q., Wang Y., Vasilyeva M., “Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties”, J. Comput. Appl. Math. (to appear), 2018 | MR

[11] Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media”, J. Natural Gas Sci. Eng., 48 (2017), 65–76 | DOI

[12] Chung E. T., Efendiev Y., Leung W.T., Wang Y., Vasilyeva V., “Non-local multi-continua upscaling for flows in heterogeneous fractured media”, 2017, arXiv: 1708.08379

[13] Chung E. T., Efendiev Y., Leung W. T., Vasilyeva M., “Coupling of multiscale and multicontinuum approaches”, Int. J. Geomath., 8:1 (2017), 9–41 | DOI | MR | Zbl

[14] Vasil’ev V. I., Vasilyeva M. V., Nikiforov D. Ya., “Solution of single-phase filtration problems by the finite element method on a computational cluster”, Vestn. SVFU, 2016, no. 6, 31–40

[15] Karimi-Fard M., Durlofsky L. J., Aziz K., “An efficient discrete fracture model applicable for general purpose reservoir simulators”, Soc. Petrol. Eng. J., 9:2 (2004), 227–236

[16] Vasilyeva M. V., Prokopiev G. A., “Numerical solution of the two-phase filtration problem with inhomogeneous coefficients by the finite element method”, Mat. Zamet. SVFU, 24:2 (2017), 46–62

[17] Vasilyeva M. V., Vasil'ev V. I., Krasnikov A. A., Nikiforov D. Ya., “Numerical simulation of the flow of single-phase fluid in fractured porous media”, Uch. Zap. Kazansk. Univ., Ser. Fiz. Mat. Nauki, 159:1 (2017), 100–115 | MR

[18] Vasil'ev V. I., Vasilyeva M. V., Laevskii Y. M., Timofeeva T. S., “Numerical simulation of the filtration of a two-phase fluid in heterogeneous media”, Sib. J. Ind. Math., 20:2 (2017), 33–40 | MR | Zbl