Numerical recovering of leading coefficient of nonlinear parabolic equation
Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 90-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We numerically recover the leading coefficient of one parabolic equation in a multidimensional region. We consider the case when the leading coefficient depends only on solution itself and observations are taken in some interior points of the region as an additional condition. Finite element method implemented by FEniCS library is used for numerical solution of the problem. Several examples of identification of the leading coefficient of a two-dimensional parabolic equation are given.
Mots-clés : inverse coefficient problem, parabolic equation
Keywords: finite element method, FEniCS.
@article{SVFU_2017_24_3_a7,
     author = {D. Kh. Ivanov},
     title = {Numerical recovering of leading coefficient of nonlinear parabolic equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {90--99},
     year = {2017},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a7/}
}
TY  - JOUR
AU  - D. Kh. Ivanov
TI  - Numerical recovering of leading coefficient of nonlinear parabolic equation
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 90
EP  - 99
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a7/
LA  - ru
ID  - SVFU_2017_24_3_a7
ER  - 
%0 Journal Article
%A D. Kh. Ivanov
%T Numerical recovering of leading coefficient of nonlinear parabolic equation
%J Matematičeskie zametki SVFU
%D 2017
%P 90-99
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a7/
%G ru
%F SVFU_2017_24_3_a7
D. Kh. Ivanov. Numerical recovering of leading coefficient of nonlinear parabolic equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 90-99. http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a7/

[1] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme Methods for Solving IllPosed Problems and Their Applications to Inverse Problems of Heat Transfer, Nauka, Moscow, 1988 | MR

[2] Samarskii A. A., Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin–New York, 2007 | MR

[3] Iskenderov A. D., “On an inverse problem for quasilinear parabolic equations”, Differ. Equ., 10:5 (1974), 890–898 | MR | Zbl

[4] Muzylev N. V., “Uniqueness theorems for some inverse heat conduction problems”, U.S.S.R. Comput. Math. Math. Phys., 20:2 (1980), 388–400 | MR | Zbl

[5] Muzylev N. V., “On the uniqueness of the simultaneous determination of the coefficients of thermal conductivity and the volume heat capacity”, U.S.S.R. Comput. Math. Math. Phys., 23:1 (1983), 102–108 | MR

[6] Artyukhin E. A., “The recovering of the temperature dependence of the thermal conductivity coefficient from the solution of the inverse problem”, High Temperature, 19:5 (1981), 963–967

[7] Logg A., Mardal K. A., Wells G., Automated solution of differential equations by the finite element method: The FEniCS book, Springer Sci. Business Media, New York, 2012 | MR | Zbl

[8] Farrell P. E., Ham D. A., Funke S. F., Rognes M. E., “Automated derivation of the adjoint of high-level transient finite element programs”, SIAM J. Sci. Comput., 35:4 (2013), 369–393 | DOI | MR

[9] Funke S. W., Farrell P. E., “A framework for automated PDE-constrained optimisation”, 2013, arXiv: 1302.3894

[10] Vasiliev F. P., Methods for Solving Extreme Problems, Nauka, Moscow, 1981 | MR

[11] Byrd R. H., Lu P., Nocedal J., Zhu C., “A limited memory algorithm for bound constrained optimization”, SIAM J. Sci. Comput V. 16, N 5., 1995, 1190–1208 | DOI | MR | Zbl