@article{SVFU_2017_24_3_a4,
author = {M. V. Vasil'eva and P. E. Zakharov and P. V. Sivtsev and D. A. Spiridonov},
title = {Numerical modeling of thermoelasticity problems for constructions with inner heat source},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {52--64},
year = {2017},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a4/}
}
TY - JOUR AU - M. V. Vasil'eva AU - P. E. Zakharov AU - P. V. Sivtsev AU - D. A. Spiridonov TI - Numerical modeling of thermoelasticity problems for constructions with inner heat source JO - Matematičeskie zametki SVFU PY - 2017 SP - 52 EP - 64 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a4/ LA - ru ID - SVFU_2017_24_3_a4 ER -
%0 Journal Article %A M. V. Vasil'eva %A P. E. Zakharov %A P. V. Sivtsev %A D. A. Spiridonov %T Numerical modeling of thermoelasticity problems for constructions with inner heat source %J Matematičeskie zametki SVFU %D 2017 %P 52-64 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a4/ %G ru %F SVFU_2017_24_3_a4
M. V. Vasil'eva; P. E. Zakharov; P. V. Sivtsev; D. A. Spiridonov. Numerical modeling of thermoelasticity problems for constructions with inner heat source. Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 52-64. http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a4/
[1] Newman C., Hansen G., Gaston D., “Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods”, J. Nuclear Materials, 392:1 (2009), 6–15 | DOI
[2] Williamson R. L., Hales J. D., Novascone S. R., Tonks M. R., Gaston D. R., Permann C. J., Andrs D., Martineau R. C., “Multidimensional multiphysics simulation of nuclear fuel behavior”, J. Nuclear Materials, 423:1 (2012), 149–163 | DOI
[3] Kang C. H., Lee S. U., Yang D. Y., Kim H. C., Yang Y. S., “3D FE simulation of the nuclear fuel rod considering the gap conductance between the pellet and cladding”, Proc. KNS Fall Meeting (Kyungju, Rep. Korea, Oct. 23-25, 2013), KNS, Daejeon, Rep. Korea, 2013
[4] Kang C. H., Lee S. U., Yang D. Y., Kim H. C., Yang Y. S., “3D finite element analysis of a nuclear fuel rod with gap elements between the pellet and the cladding”, J. Nuclear Sci. Technology, 53:2 (2016), 232–239 | DOI
[5] Philip B., Berrill M. A., Allu S., Hamilton S. P., Sampath R. S., Clarno K. T., Dilts G. A., “A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins”, J. Comput. Phys., 286 (2015), 143–171 | DOI | MR | Zbl
[6] Ramirez J. C., Stan M., Cristea P., “Simulations of heat and oxygen diffusion in UO2 nuclear fuel rods”, J. Nuclear Materials, 359:3 (2006), 174–184 | DOI | MR
[7] Mihaila B., Stan M., Ramirez J., Cristea P., “Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements”, J. Nuclear Materials, 394:2 (2009), 182–189 | DOI
[8] Brown D. L., Vasilyeva M. A., “A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling”, J. Comput. Appl. Math., 297 (2016), 132–146 | DOI | MR | Zbl
[9] Brown D. L., Vasilyeva M. A., “A generalized multiscale finite element method for poroelasticity problems I: Linear problems”, J. Comput. Appl. Math., 294 (2016), 372–388 | DOI | MR | Zbl
[10] Hales J. D. et al., BISON theory manual. The equations behind nuclear fuel analysis, Idaho Nat. Lab., 2013
[11] Rashid Y., Dunham R., Montgomery R., Fuel analysis and licensing code: FALCON MOD01., EPRI Rep. EPRI, 2004 | MR
[12] Veshchunov M. S. et al., “Code Package SVECHA: Modeling of core degradation phenomena at severe accidents”, Proc. 7th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-7 (Saratoga Springs, NY, Sept. 10-15, 1995), 1995, 1914
[13] Berdyshev A. V., Boldyrev A. V., Palagin A., Shestak V., Veshchunov M. S., “SVECHA/QUENCH code for the modeling of reflooding phenomena in severe accidents conditions”, Proc. 9th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-9 (San Francisco, CA), 1999
[14] Hagrman D. L., Reymann G. A., MATPRO-VERSION 11. Handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, Idaho Nat. Eng. Lab., Idaho Falls (USA), 1979
[15] Hales J. D. et al., “Asymptotic expansion homogenization for multiscale nuclear fuel analysis”, Comput. Materials Sci., 99 (2015), 290–297 | DOI
[16] Vabishchevich P. N., Vasilyeva M. V., Kolesov A. E., “Splitting scheme for poroelasticity and thermoelasticity problems”, Comput. Math. Math. Phys., 54:8 (2014), 1305–1315 | DOI | DOI | MR | Zbl
[17] Geuzaine C., Remacle J.-F., Software GMSH, http://geuz.org/gmsh
[18] Logg A., Mardal K. A., Wells G., Automated solution of differential equations by the finite element method: The FEniCS book, Springer Sci. Business Media, New York, 2012 | MR | Zbl
[19] Samarskij A. A., Vabishhevich P. N., Vychislitel'naia Teploperedacha, Editorial URSS, Moscow, 2003
[20] Vasilyeva M. V., Stal'nov D. A., “Mathematical modeling of the thermomechanical state of a heat-inducing element”, Vestn. SVFU, 2016, no. 1, 45–59
[21] Vabishhevich P. N., Vasilyeva M. V., “Numerical modeling for thermoelasticity problems”, Vestn. SVFU, 10:3 (2013), 5–9
[22] Sivtsev P. V., Vabishchevich P. N., Vasilyeva M. V., “Numerical simulation of thermoelasticity problems on high performance computing systems”, Proc. Int. Conf. Finite Difference Methods, Springer, Berlin, 2014, 364–370 | MR
[23] Simo J. C., Hughes T. J. R., Computational inelasticity, Interdiscip. Appl. Math., 7, Springer, New York, 1998 | MR | Zbl
[24] De Souza Neto E., Peric D., Owen D. R. J., Computational methods for plasticity: Theory and applications, John Wiley Sons, New York, 2008