Mots-clés : fracture, fuel element, double diffusion model, interface condition
@article{SVFU_2017_24_3_a2,
author = {V. N. Alekseev and M. V. Vasil'eva and G. A. Prokop'ev and A. A. Tyrylgin},
title = {Models of thermoelasticity for porous materials with fractures taken into account},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {19--37},
year = {2017},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a2/}
}
TY - JOUR AU - V. N. Alekseev AU - M. V. Vasil'eva AU - G. A. Prokop'ev AU - A. A. Tyrylgin TI - Models of thermoelasticity for porous materials with fractures taken into account JO - Matematičeskie zametki SVFU PY - 2017 SP - 19 EP - 37 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a2/ LA - ru ID - SVFU_2017_24_3_a2 ER -
%0 Journal Article %A V. N. Alekseev %A M. V. Vasil'eva %A G. A. Prokop'ev %A A. A. Tyrylgin %T Models of thermoelasticity for porous materials with fractures taken into account %J Matematičeskie zametki SVFU %D 2017 %P 19-37 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a2/ %G ru %F SVFU_2017_24_3_a2
V. N. Alekseev; M. V. Vasil'eva; G. A. Prokop'ev; A. A. Tyrylgin. Models of thermoelasticity for porous materials with fractures taken into account. Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 19-37. http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a2/
[1] Vasil'eva M. V. and Stal'nov D. A., “Mathematical modelling of the thermodynamic state of the heat-inducing element”, Vestn. SVFU, 2016, no. 1, 45–59
[2] Hales J. D., Tonks M. R., Chockalingam K., Perez D. M., Novascone S. R., Spencer B. W., Williamson R. L., “Asymptotic expansion homogenization for multiscale nuclear fuel analysis”, Comput. Materials Sci., 99 (2015), 290–297 | DOI
[3] Antic A., Hill J. M., “The double-diffusivity heat transfer model for grain stores incorporating microwave heating”, Appl. Math. Model., 27:8 (2003), 629–647 | DOI | Zbl
[4] Bai M., Elsworth D., Roegiers J.-C., “Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs”, Water Resources Research, 29:6 (1993), 1621–1634 | DOI
[5] Lee A. I., Hill J. M., “On the general linear coupled system for diffusion in media with two diffusivities”, J. Math. Anal. Appl., 89:2 (1982), 530–557 | DOI | MR | Zbl
[6] Showalter R. E., Visarraga D. B., “Double-diffusion models from a highly-heterogeneous medium”, J. Math. Anal. Appl., 295:1 (2004), 191–210 | DOI | MR | Zbl
[7] Arbogast T., Douglas Jr J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl
[8] Barenblatt G. I., Zheltov Iu P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | DOI | Zbl
[9] Kazemi H., Merrill Jr L. S., Porterfield K. L., Zeman P. R., “Numerical simulation of water-oil flow in naturally fractured reservoirs”, Soc. Petroleum Engin. J., 16:6 (1976), 317–326 | DOI
[10] Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Soc. Petroleum Engin. J., 3:3 (1963), 245–255 | DOI
[11] Vabishhevich P. N., Grigor'ev A. V, “Numerical modeling of fluid flow in anisotropic fractured porous media”, Numer. Anal. Appl., 9:1 (2016), 45–56 | DOI | MR | MR
[12] Boal N., Gaspar F. J., Lisbona F., Vabishchevich P., “Finite-difference analysis for the linear thermoporoelasticity problem and its numerical resolution by multigrid methods”, Math. Modell. Anal., 17:2 (2012), 227–244 | DOI | MR | Zbl
[13] Brown D. L., Vasilyeva M., “A generalized multiscale finite element method for poroelasticity problems I: linear problems”, J. Comput. Appl. Math., 294 (2016), 372–388 | DOI | MR | Zbl
[14] Brown D. L., Vasilyeva M., “A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling”, J. Comput. Appl. Math., 297 (2016), 132–146 | DOI | MR | Zbl
[15] Kolesov A. E., Vabishchevich P. N., Vasilyeva M. V., “Splitting schemes for poroelasticity and thermoelasticity problems”, Comput Math. Appl., 67:12 (2014), 2185–2198 | DOI | MR | Zbl
[16] Vabishhevich P. N., Vasil'eva M. V., Kolesov A. E., “Splitting scheme for poroelasticity and thermoelasticity problems”, Comput. Math. Math. Phys., 54:8 (2014), 1345–1355 | DOI
[17] Akkutlu I. Y., Efendiev Y., Vasilyeva M., “Multiscale model reduction for shale gas transport in fractured media”, Comput. Geosci., 20:5 (2016), 953–973 | DOI | MR | Zbl
[18] Chen H.-Y., Teufel L. W., “Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs-model description and comparison”, SPE International Petroleum Conference and Exhibition in Mexico (Villahermosa, Mexico, 1-3 February), Society of Petroleum Engineers, 2000
[19] Garipov T. T., Karimi-Fard M., Tchelepi H. A., “Discrete fracture model for coupled flow and geomechanics”, Comput. Geosci., 20:1 (2016), 149–160 | DOI | MR | Zbl
[20] Goltsev A.S., “Using discontinuity method in plane thermoelastic problems of fracture mechanics”, J. Thermal Stresses, 35:12 (2012), 1108–1118 | DOI
[21] Hanowski K. K., Sander O., Simulation of deformation and flow in fractured, poroelastic materials, 2016, arXiv: 1606.05765
[22] Martin V., Jaffré J., Roberts J. E., “Modeling fractures and barriers as interfaces for flow in porous media”, SIAM J. Sci. Comput., 26:5 (2005), 1667–1691 | DOI | MR | Zbl
[23] Duflot M., “The extended finite element method in thermoelastic fracture mechanics”, Intern. J. Numer. Meth. Engineering, 74:5 (2008), 827–847 | DOI | MR | Zbl
[24] Sivtsev P. V., Vabishchevich P. N., Vasilyeva M. V., “Numerical simulation of thermoelasticity problems on high performance computing systems”, Intern. Conf. Finite Differ. Methods., Springer-Verl., Berlin, 2014, 364–370 | MR
[25] Vabishhevich P. N., Vasil'eva M. V., “Numerical modelling of thermoelasticity problems”, Vestn. SVFU, 10:3 (2013), 5–10
[26] Chung E. T., Efendiev Y., Gibson Jr R. L., Vasilyeva M., “A generalized multiscale finite element method for elastic wave propagation in fractured media”, GEM-Intern. J. Geomath., 7:2 (2016), 163–182 | DOI | MR | Zbl
[27] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[28] De Basabe J. D., Sen M. K., Wheeler M. F., “The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion”, Geophys. J. Intern., 175:1 (2008), 83–93 | DOI
[29] Riviere B., Wheeler M. F., Girault V., “Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I”, Comput. Geosci., 3:3-4 (1999), 337–360 | DOI | MR | Zbl
[30] Brenner S., Scott R., The mathematical theory of finite element methods, Springer Science Business Media, New York, 2007 | MR
[31] Riviere B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, Soc. Industr. Appl. Math., 2008, 201 pp. | MR | Zbl
[32] Samarskii A. A., Vabishhevich P. N., Vychislitel'naya Teploperedacha, LIBROKOM, Moscow, 2009