On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations)
Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the features of the polyhedron geometric structure related to their belonging to different symmetry groups. We derive basic equations for the vertices, faces, and edges of the polyhedron depending on their location on the axial, planar, and primitive orbits.
Keywords: polyhedron, coordination polyhedron, fundamental cells, symmetry axes, symmetry planes
Mots-clés : equations.
@article{SVFU_2017_24_3_a0,
     author = {I. M. Petrushko},
     title = {On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations)},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--11},
     year = {2017},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a0/}
}
TY  - JOUR
AU  - I. M. Petrushko
TI  - On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations)
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 3
EP  - 11
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a0/
LA  - ru
ID  - SVFU_2017_24_3_a0
ER  - 
%0 Journal Article
%A I. M. Petrushko
%T On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations)
%J Matematičeskie zametki SVFU
%D 2017
%P 3-11
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a0/
%G ru
%F SVFU_2017_24_3_a0
I. M. Petrushko. On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations). Matematičeskie zametki SVFU, Tome 24 (2017) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/SVFU_2017_24_3_a0/

[1] Kustov E. F., Petrushko I. M., and Petrushko M. I., “Structure and classification of nanostructures”, Pap. 12th Int. Conf. MKEEE-2008, MKEEE-2008 (Alushta, Sept. 29–Oct. 4, 2008), Moscow, 2008, 352–353

[2] Kustov E. F. and Petrushko M. I., “Energy structure of porfine molecule”, MPEI Bull., 2003, no. 2, 56–61

[3] Kustov E. F. and Petrushko M. I., “Energy structure of bacteriochlorine molecule C20N4H16”, MPEI Bull., 2003, no. 3, 59–62

[4] Kustov E. F., “Orbital structure of nanosize matters”, Dokl. Phys. Chem., 438, part 2:5 (2011), 105–108 | DOI | Zbl

[5] Kalinnikov V. T., Kustov E. F., Novotortsev V. M., “Four-dimensional composition-structure property-dispersity relationship”, Russ. J. Inorg. Chem., 55:13 (2010), 2031–2072 | DOI

[6] Brave O., Selected Works, Nauka, Leningrad, 1974

[7] Bokyi G. B., Crystal Chemistry, Nauka, Moscow, 1971

[8] Kustov E. F., Nefedov V. I., “Nanostructures: composition, structure, and classification”, Russ. J. Inorg. Chem., 53:4 (2008), 2103–2170 | DOI

[9] Kustov E. F., “Theory and classification of nanostructure shells”, J. Comput. Theor. Nanosci., 5 (2008), 317–327 | DOI

[10] Kustov E. F., “Molecular orbital theory of nanoshells”, J. Comput. Theor. Nanosci., 5 (2008), 2144–2152 | DOI

[11] Kustov E. F., “Composition and space structure of nanoshells”, J. Comput. Theor. Nanosci., 6 (2009), 692–705 | DOI