Numerical method for solving boundary inverse problem for one-dimensional parabolic equation
Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 108-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a numerical method for solving boundary inverse problem using the implicit difference scheme for approximation by time and finite difference method for the boundary inverse problem. A numerical solution to the boundary inverse problem is determined by special decomposition which transforms the problem into two standard problems. We present the results of numerical experiments, including those with random errors in the input data, which confirm the capabilities of the proposed computational algorithms for solving this boundary inverse problem.
Keywords: boundary inverse problem, finite difference method, numerical solution, parabolic partial differential equation.
@article{SVFU_2017_24_2_a8,
     author = {V. I. Vasiliev and L. Su},
     title = {Numerical method for solving boundary inverse problem for one-dimensional parabolic equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {108--117},
     year = {2017},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/}
}
TY  - JOUR
AU  - V. I. Vasiliev
AU  - L. Su
TI  - Numerical method for solving boundary inverse problem for one-dimensional parabolic equation
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 108
EP  - 117
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/
LA  - en
ID  - SVFU_2017_24_2_a8
ER  - 
%0 Journal Article
%A V. I. Vasiliev
%A L. Su
%T Numerical method for solving boundary inverse problem for one-dimensional parabolic equation
%J Matematičeskie zametki SVFU
%D 2017
%P 108-117
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/
%G en
%F SVFU_2017_24_2_a8
V. I. Vasiliev; L. Su. Numerical method for solving boundary inverse problem for one-dimensional parabolic equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 108-117. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/

[1] Olver P., Introduction to Partial Differential Equations, Springer, Cham, 2014 | MR

[2] Guenther R. B. and Lee J. W., Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publ., New York, 2012 | MR

[3] Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Dover Publ., New York, 2011 | MR

[4] Evans L. C., Partial Differential Equations, Amer. Math. Soc., Washington, 2010

[5] Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, 2001 | MR

[6] Jiang Z. W., “A meshfree method for numerical solution of nonhomogeneous time dependent problems”, Abstract and Appl. Anal., 2014 (2014), Article ID 978310, 11 pp. | MR

[7] Samarskii A. A. and Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2007 | MR

[8] Jiang T. S., Li M., and Chen C. S., “The method of particular solutions for solving inverse problems for a nonhomogeneous convection diffusion equation with variable coefficients”, Numer. Heat Transfer, P. A: Applications, 61:5 (2012), 338–352 | DOI

[9] Kang H., “A uniqueness theorem for an inverse boundary value problem in two dimensions”, J. Math. Anal. Appl., 270:1 (2002), 291–302 | DOI | MR

[10] Vabishchevich P. N. and Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engin., 24:1 (2016), 42–59 | DOI | MR

[11] Vabishchevich P. N., “Iterative computational identification of a spacewise dependent the source in a parabolic equations”, Inverse Probl. Sci. Engin., 25:8 (2017), 1168–1190 | DOI | MR

[12] Vasil'ev V. V., Vasilyeva M. V., and Kardashevsky A. M., “The numerical solution of the boundary inverse problem for a parabolic equation”, Application of Mathematics in Technical and Natural Sciences, AIP Conf. Proc., 1773:1 (2016), 100010, AIP Publ.

[13] Colaço M. J., Orlande H. R. B., and Dulikravich G. S., “Inverse and optimization problems in heat transfer”, J. Braz. Soc. Mech. Sci. Engin., 28:1/1 (2006)

[14] Kamynin V. L., “On the solvability of the inverse problem for determining the right hand side of a degenerate parabolic equation with integral observation”, Math. Notes, 98:5 (2015), 765–777 | DOI | MR

[15] Kamynin V. L., “The inverse problem of the simultaneous determination of the right hand side and the lowest coefficient in parabolic equations with many space variables”, Math. Notes, 97:3 (2015), 349–361 | DOI | MR

[16] Vabishchevich P. N., Vasil'ev V. I., and Vasil'eva M. V., “Computational identification of the right hand side of a parabolic equation”, Comput. Math. Math. Phys., 55:9 (2015), 1015–1021 | DOI | MR

[17] Kabanikhin S. I., Inverse and Ill-Posed Problems: Theory and Applications, Walter de Gruyter, Berlin and Boston, 2011 | MR

[18] Jonas P. and Louis A. K., “Approximate inverse for a one-dimensional inverse heat conduction problem”, Inverse Problems, 16:1 (2000), 175-185 | DOI | MR

[19] Alifanov O. M., Inverse Heat Transfer Problems, Int. Ser. Heat Mass Transfer, Springer-Verl., Heidelberg, 1994 | DOI