@article{SVFU_2017_24_2_a8,
author = {V. I. Vasiliev and L. Su},
title = {Numerical method for solving boundary inverse problem for one-dimensional parabolic equation},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {108--117},
year = {2017},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/}
}
TY - JOUR AU - V. I. Vasiliev AU - L. Su TI - Numerical method for solving boundary inverse problem for one-dimensional parabolic equation JO - Matematičeskie zametki SVFU PY - 2017 SP - 108 EP - 117 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/ LA - en ID - SVFU_2017_24_2_a8 ER -
V. I. Vasiliev; L. Su. Numerical method for solving boundary inverse problem for one-dimensional parabolic equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 108-117. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a8/
[1] Olver P., Introduction to Partial Differential Equations, Springer, Cham, 2014 | MR
[2] Guenther R. B. and Lee J. W., Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publ., New York, 2012 | MR
[3] Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Dover Publ., New York, 2011 | MR
[4] Evans L. C., Partial Differential Equations, Amer. Math. Soc., Washington, 2010
[5] Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, 2001 | MR
[6] Jiang Z. W., “A meshfree method for numerical solution of nonhomogeneous time dependent problems”, Abstract and Appl. Anal., 2014 (2014), Article ID 978310, 11 pp. | MR
[7] Samarskii A. A. and Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2007 | MR
[8] Jiang T. S., Li M., and Chen C. S., “The method of particular solutions for solving inverse problems for a nonhomogeneous convection diffusion equation with variable coefficients”, Numer. Heat Transfer, P. A: Applications, 61:5 (2012), 338–352 | DOI
[9] Kang H., “A uniqueness theorem for an inverse boundary value problem in two dimensions”, J. Math. Anal. Appl., 270:1 (2002), 291–302 | DOI | MR
[10] Vabishchevich P. N. and Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engin., 24:1 (2016), 42–59 | DOI | MR
[11] Vabishchevich P. N., “Iterative computational identification of a spacewise dependent the source in a parabolic equations”, Inverse Probl. Sci. Engin., 25:8 (2017), 1168–1190 | DOI | MR
[12] Vasil'ev V. V., Vasilyeva M. V., and Kardashevsky A. M., “The numerical solution of the boundary inverse problem for a parabolic equation”, Application of Mathematics in Technical and Natural Sciences, AIP Conf. Proc., 1773:1 (2016), 100010, AIP Publ.
[13] Colaço M. J., Orlande H. R. B., and Dulikravich G. S., “Inverse and optimization problems in heat transfer”, J. Braz. Soc. Mech. Sci. Engin., 28:1/1 (2006)
[14] Kamynin V. L., “On the solvability of the inverse problem for determining the right hand side of a degenerate parabolic equation with integral observation”, Math. Notes, 98:5 (2015), 765–777 | DOI | MR
[15] Kamynin V. L., “The inverse problem of the simultaneous determination of the right hand side and the lowest coefficient in parabolic equations with many space variables”, Math. Notes, 97:3 (2015), 349–361 | DOI | MR
[16] Vabishchevich P. N., Vasil'ev V. I., and Vasil'eva M. V., “Computational identification of the right hand side of a parabolic equation”, Comput. Math. Math. Phys., 55:9 (2015), 1015–1021 | DOI | MR
[17] Kabanikhin S. I., Inverse and Ill-Posed Problems: Theory and Applications, Walter de Gruyter, Berlin and Boston, 2011 | MR
[18] Jonas P. and Louis A. K., “Approximate inverse for a one-dimensional inverse heat conduction problem”, Inverse Problems, 16:1 (2000), 175-185 | DOI | MR
[19] Alifanov O. M., Inverse Heat Transfer Problems, Int. Ser. Heat Mass Transfer, Springer-Verl., Heidelberg, 1994 | DOI