Keywords: thermodynamic equilibrium, self-similar solution, thermal diffusivity, water saturation, moisture.
@article{SVFU_2017_24_2_a6,
author = {V. V. Popov},
title = {Mathematical model of soil freezing},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {85--95},
year = {2017},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a6/}
}
V. V. Popov. Mathematical model of soil freezing. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 85-95. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a6/
[1] Entov V. M., Maximov A. M., and Tsypkin G. G., Formation of two-phase domain during the freezing process in a porous medium, Preprint No269, Moscow, 1986
[2] Vasil'ev V. I., Maximov A. M., Petrov E. E., and Tsypkin G. G., Teplomassoperenos v Promerzauschih i Protaivaushih Gruntah, Nauka, Moscow, 1996
[3] Vasil'ev V. I., Maximov A. M., Petrov E. E., and Tsypkin G. G., “A mathematical model for the freezing–thawing of a saline frozen soil”, J. Appl. Mech. Tech. Phys., 36:5 (1995), 57–66
[4] Vasil'ev V. I. and Popov V. V., “Numerical solution of the soil freezing problem,”, Mat. Modelir., 20:7 (2008), 119–128
[5] Popov V. V., “Two-dimensional mathematical model of the freezing process of a moist soil saturated with a solute of salt”, Vestn. Severo-Vostoch. Federal. Univ., 11:5 (2014), 9-23
[6] Popov V. V., “Automodel solution to the problem of the freezing process of a potous medium saturated with an aqueous solute of salt”, Nauka Obrazov., 1998, no. 1, 92–95