Computational identification of the boundary condition in the heat transfer problems
Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 63-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse boundary-value problems of heat transfer are of great practical importance, and the work of many authors is devoted to the numerical methods of their solution. We consider a direct method for solving inverse boundary-value problems for a one-dimensional parabolic equation that decomposes a finite-difference analogue of the problem at each time layer. With the help of the proposed numerical solution, we solve the inverse boundary-value problems with a fixed boundary, with a moving boundary, and the Stefan problem. The results of numerical calculations are discussed.
Keywords: inverse boundary problem, inverse Stefan problem, finite difference method, marching method.
@article{SVFU_2017_24_2_a4,
     author = {A. M. Efimova},
     title = {Computational identification of the boundary condition in the heat transfer problems},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {63--74},
     year = {2017},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/}
}
TY  - JOUR
AU  - A. M. Efimova
TI  - Computational identification of the boundary condition in the heat transfer problems
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 63
EP  - 74
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/
LA  - ru
ID  - SVFU_2017_24_2_a4
ER  - 
%0 Journal Article
%A A. M. Efimova
%T Computational identification of the boundary condition in the heat transfer problems
%J Matematičeskie zametki SVFU
%D 2017
%P 63-74
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/
%G ru
%F SVFU_2017_24_2_a4
A. M. Efimova. Computational identification of the boundary condition in the heat transfer problems. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 63-74. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/

[1] Alekseev A. S., Belonosov V. S., and Glinsky B. M., Methods for Solving Direct and Inverse Problems of Seismology, Electromagnetism, and Experimental Studies in the Problems of Studying Ggeodynamic Processes in the Crust and Upper Mantle of the Earth, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 2010

[2] Alifanov O. M., Heat Exchange Inverse Problems, Mashinostroenie Publ., Moscow, 1988

[3] Tikhonov A. N. and Arsenin V. Yu., Solutions of Ill Posed Problems, Nauka, Moscow, 1986 | MR

[4] Kabanikhin S. I., Inverse and Ill-posed Problems, Sib. Sci. Publ. House, Novosibirsk, 2009

[5] Samarskiy A. A. and Vabishchevich P. N., Numerical Methods of Solution of Inverse Problems of Mathematical Physics, Izdat. LKI, Moscow, 2009

[6] Kalitkin N. N., Numerical Methods, Nauka, Moscow, 1978 | MR

[7] Samarskiy A. A., The Theory of Difference Schemes, Nauka, Moscow, 1977 | MR

[8] Vabishchevich P. N., Vasil'ev V. I., and Vasilyeva M. V., Comput. Math. Math. Phys., 55:6 (2015), 1015–1021 | DOI | DOI | MR

[9] Vabishchevich P. N. and Vasil'ev V. I., “Computational determination of the lowest order coefficient in a parabolic equation”, Dokl. Math., 89:2 (2014), 179-181 | DOI | DOI | MR

[10] Vabishchevich P. N., Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engin., 24:1 (2016), 42–59 | DOI | MR

[11] Vasil'ev V. I., Vasilyeva M. V., Kardashevsky A. M., “The numerical solution of the boundary inverse problem for a parabolic equation”, AIP Conf. Proc., 1773 (2016), 100010 | DOI

[12] Johansson B. T., Lesnic D., Reeve T., “A method of fundamental solutions for the one dimensional inverse Stefan problem”, Appl. Math. Modell., 35:9 (2011), 4367–4378 | DOI | MR