@article{SVFU_2017_24_2_a4,
author = {A. M. Efimova},
title = {Computational identification of the boundary condition in the heat transfer problems},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {63--74},
year = {2017},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/}
}
A. M. Efimova. Computational identification of the boundary condition in the heat transfer problems. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 63-74. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a4/
[1] Alekseev A. S., Belonosov V. S., and Glinsky B. M., Methods for Solving Direct and Inverse Problems of Seismology, Electromagnetism, and Experimental Studies in the Problems of Studying Ggeodynamic Processes in the Crust and Upper Mantle of the Earth, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 2010
[2] Alifanov O. M., Heat Exchange Inverse Problems, Mashinostroenie Publ., Moscow, 1988
[3] Tikhonov A. N. and Arsenin V. Yu., Solutions of Ill Posed Problems, Nauka, Moscow, 1986 | MR
[4] Kabanikhin S. I., Inverse and Ill-posed Problems, Sib. Sci. Publ. House, Novosibirsk, 2009
[5] Samarskiy A. A. and Vabishchevich P. N., Numerical Methods of Solution of Inverse Problems of Mathematical Physics, Izdat. LKI, Moscow, 2009
[6] Kalitkin N. N., Numerical Methods, Nauka, Moscow, 1978 | MR
[7] Samarskiy A. A., The Theory of Difference Schemes, Nauka, Moscow, 1977 | MR
[8] Vabishchevich P. N., Vasil'ev V. I., and Vasilyeva M. V., Comput. Math. Math. Phys., 55:6 (2015), 1015–1021 | DOI | DOI | MR
[9] Vabishchevich P. N. and Vasil'ev V. I., “Computational determination of the lowest order coefficient in a parabolic equation”, Dokl. Math., 89:2 (2014), 179-181 | DOI | DOI | MR
[10] Vabishchevich P. N., Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engin., 24:1 (2016), 42–59 | DOI | MR
[11] Vasil'ev V. I., Vasilyeva M. V., Kardashevsky A. M., “The numerical solution of the boundary inverse problem for a parabolic equation”, AIP Conf. Proc., 1773 (2016), 100010 | DOI
[12] Johansson B. T., Lesnic D., Reeve T., “A method of fundamental solutions for the one dimensional inverse Stefan problem”, Appl. Math. Modell., 35:9 (2011), 4367–4378 | DOI | MR