About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface
Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article focuses on projective differential geometry of submanifolds of $2$-dimensional planes manifolds $G(2, 5)$ in projective space $P^5$ containing single developable surface. To study such submanifolds we use the Grassmann mapping of manifold $G(2, 5)$ of $2$-dimensional planes in projective space $P^5$ to $9$-dimensional algebraic manifold $\Omega (2, 5)$ of space $P^19$. This mapping combined with the method of external Cartan's forms and moving frame method made possible to determine the structure of considered manifolds.
Keywords: Grassmann manifold, complexes of multidimensional planes, Grassmann mapping, Segre manifold.
@article{SVFU_2017_24_2_a0,
     author = {I. V. Bubyakin},
     title = {About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--12},
     year = {2017},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a0/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 3
EP  - 12
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a0/
LA  - ru
ID  - SVFU_2017_24_2_a0
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface
%J Matematičeskie zametki SVFU
%D 2017
%P 3-12
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a0/
%G ru
%F SVFU_2017_24_2_a0
I. V. Bubyakin. About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface. Matematičeskie zametki SVFU, Tome 24 (2017) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/SVFU_2017_24_2_a0/

[1] Gelfand I. M., Gindikin S. G., and Graev M. I., Selected Topics in Integral Geometry, Transl. Math. Monogr., 220, Amer. Math. Soc., Providence, RI, 2007 | MR | MR

[2] Gelfand I. M. and Graev M. I., “Hypergeometric functions associated with Grassmanian $G_{3,6}$”, Mat. Sb., 180:1 (1989), 3–38 | MR

[3] Bubyakin I. V., Century Geometry of Five-Dimensional Complexes of Two-Dimensional Planes, Nauka, Novosibirsk, 2001

[4] Akivis M. A., “On the differential geometry of a Grassmann manifold”, Tensor, 38 (1982), 273–282 | MR

[5] Akivis M. A., Goldberg V. V., “On the structure of submanifolds with degenerate Gauss maps”, Geom. Dedicata, 86:1-3 (2001), 205–226 | DOI | MR

[6] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds, North-Holland, Amsterdam, 1993 | MR

[7] Landsberg J. M., Algebraic geometry and projective differential geometry, Lect. Notes Ser. Seoul, 45, Seoul National Univ., Seoul, 1999 | MR