@article{SVFU_2017_24_1_a7,
author = {V. V. Grigoriev and P. E. Zakharov},
title = {Numerical modeling of the two-dimensional {Rayleigh-Benard} convection},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {87--98},
year = {2017},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a7/}
}
V. V. Grigoriev; P. E. Zakharov. Numerical modeling of the two-dimensional Rayleigh-Benard convection. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 87-98. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a7/
[1] Getling A. V., Rayleigh–Bénard Convection: Structures and Dynamics, Adv. Ser. Nonlinear Dyn, 11, World Sci., Singapore, 1998 | DOI | MR
[2] Kolmychkov V. V., Mazhorova O. S., Popov Yu. P., Fedoseev E. E., “On numerical modeling of the Rayleigh–Bénard convection”, preprint Keldysh Inst. Appl. Math., 2007
[3] Getling A.V., “Formation of spatial structures in Rayleigh–Bénard convection”, Sov. Phys. Usp., 34:9 (1991), 737–776 | DOI | MR
[4] Zakinyan R. G., Sukhov S. A., and Larchenko I. N., “Mathematical modeling of the heat convection”, Contemporary Problems in Science and Education, 6 (2011) available online at www.science-education.ru/100-5016
[5] Chillà F., Schumacher J., “New perspectives in turbulent Rayleigh-Bénard convection”, Europ. Phys. J.(E), 35:7 (2012), 1–25 | MR
[6] Spiegelman M., “Myths and methods in modeling”, Columbia Univ. Course Lecture Notes, 2004 Available online at www.ldeo.columbia.edu/~mspieg/mmm/course.pdf
[7] Samarskii A. A. and Vabishchevich P. N., Numerical Heat Transfer, Librokom, Moscow, 2009
[8] Logg A., Mardal K.-A., Wells G., Automated Solution of Differential Equations by the Finite Element Method, The FEniCS book, 84, Springer Science Business Media, Berlin, 2012 | MR | Zbl
[9] Otto F., Seis C., “Rayleigh–Bénard convection: improved bounds on the nusselt number”, J. Math. Phys., 52:8 (2011), 083702 | DOI | MR | Zbl
[10] Sakievich P. J., Peet Y. T., Adrian R. J, “Large-scale thermal motions of turbulent Rayleigh–Bénard convection in a wide aspect-ratio cylindrical domain”, Intern. J. Heat Fluid Flow, 61 (2016), 183–196 | DOI
[11] Vynnycky M., Masuda Y., “Rayleigh–Bénard convection at high rayleigh number and infinite Prandtl number: Asymptotics and numerics”, Phys. Fluids, 25:11 (2013), 113602 | DOI | Zbl
[12] Vabishchevich P. N. (ed.), Computational Technologies. Profesional Level, URSS, 2014
[13] Alnaes M., Blechta J., Hake J., Johansson A., Kehlet B., Logg A., Richardson C., Ring J., Rognes M. E., and Wells G. N, “The FEniCS Project Version 1.5”, Arch. Numer. Software, 3 (2015), 9–23
[14] Lir J. T. and Lin T. F., “Visualization of roll patterns in Rayleigh–Bénard convection of air in a rectangular shallow cavity”, Intern. J. Heat Mass Transfer, 44:15 (2001), 2889–2902 | DOI | Zbl