Keywords: nonlocal problem, resolving formula.
@article{SVFU_2017_24_1_a5,
author = {I. V. Tikhonov and V. N. Son Tung},
title = {Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {57--73},
year = {2017},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a5/}
}
TY - JOUR AU - I. V. Tikhonov AU - V. N. Son Tung TI - Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation JO - Matematičeskie zametki SVFU PY - 2017 SP - 57 EP - 73 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a5/ LA - ru ID - SVFU_2017_24_1_a5 ER -
%0 Journal Article %A I. V. Tikhonov %A V. N. Son Tung %T Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation %J Matematičeskie zametki SVFU %D 2017 %P 57-73 %V 24 %N 1 %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a5/ %G ru %F SVFU_2017_24_1_a5
I. V. Tikhonov; V. N. Son Tung. Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a5/
[1] Kaper H. G., Lekkerkerker C. G., and Hejtmanek J., Spectral methods in linear transport theory, Birkhäuser, Basel, 1982 | MR | Zbl
[2] Reed M. and Simon B, Methods of Modern Mathematical Physics, v. 3, Scattering Theory, Mir, Moscow, 1982 | MR
[3] Engel K.-J. and Nagel R., One-parameter semigroups for linear evolution equations, Springer-Verl., New York, 2000 | MR | Zbl
[4] Jörgens K., “An asymptotic expansion in the theory of neutron transport”, Commun. Pure Appl. Math., 11:2 (1958), 219–242 | DOI | MR | Zbl
[5] Greiner G., “Spectral properties and asymptotic behavior of the linear transport equation”, Math. Z., 185:2 (1958), 167–177 | DOI | MR
[6] Prilepko A. I., “Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations)”, Math. Notes, 14 (1974), 990-996 | DOI | MR | Zbl
[7] Prilepko A. I. and Ivankov A. L., “Inverse problems for determining the coefficient, the scattering indicatrix and the right-hand side of a time-dependent multiple-speed transport equation”, Differ. Equations, 21 (1985), 598–609 | MR | Zbl
[8] Orlovskij D. G. and Prilepko A. I., “Some inverse problems for the linearized Boltzmann equation”, U.S.S.R. Comput. Math. Math. Phys., 27:6 (1987), 58–65 | DOI | MR | Zbl
[9] Prilepko A. I. and Volkov N. P., “Inverse problems of finding parameters of a nonstationary kinetic transfer equation from supplementary information on traces of the unknown function”, Differ. Equations, 24:1 (1988), 107–115 | MR | Zbl
[10] Tikhonov I. V., “Well-posedness of an inverse problem with final overdetermination for the nonstationary transport equation”, Mosc. Univ. Comput. Math. Cybern., 1995, no. 1, 51–57 | MR | Zbl
[11] Tikhonov I. V., “Solvability of a problem with a nonlocal integral condition for a differential equation in a Banach space”, Differ. Equations, 34:6 (1998), 841–844 | MR | Zbl
[12] Tikhonov I. V., “Uniqueness theorems in linear nonlocal problems for abstract differential equations”, Izv. Math., 67:2 (2003), 333—363 | DOI | MR | Zbl
[13] Arutyunov A. V, Lectures on Convex and Many-Valued Analysis, Fizmatlit, Moscow, 2014
[14] J. Soviet Math., 54:4 (1991), 1042–1129 | DOI | MR | Zbl