The Gevrey boundary value problem for a third order equation
Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Gevrey and Cauchy problems for a third order equation with multiple characteristics with weighted gluing conditions. In the case of continuous gluing conditions, the solvability of the Gevrey problem is reduced to the theory of homogeneous integral equations of degree -1 with a kernel. In the case of weighted gluing conditions, the solvability is reduced to the theory of singular integral equations with a singular kernel. The solvability of boundary value problems is established in Hölder spaces. It is shown that the Hölder classes of solutions of the Gevrey problem in the case of weighted gluing functions depend both on the non-integer Hölder exponent and on the weight coefficients of the gluing conditions when necessary and sufficient conditions are satisfied for the input data of the problem.
Keywords: the Gevrey problem, the Cauchy problem, equations with changing time direction, gluing conditions, correctness, singular integral equation.
Mots-clés : Hölder space
@article{SVFU_2017_24_1_a4,
     author = {S. V. Popov},
     title = {The {Gevrey} boundary value problem for a third order equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {43--56},
     year = {2017},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/}
}
TY  - JOUR
AU  - S. V. Popov
TI  - The Gevrey boundary value problem for a third order equation
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 43
EP  - 56
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/
LA  - ru
ID  - SVFU_2017_24_1_a4
ER  - 
%0 Journal Article
%A S. V. Popov
%T The Gevrey boundary value problem for a third order equation
%J Matematičeskie zametki SVFU
%D 2017
%P 43-56
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/
%G ru
%F SVFU_2017_24_1_a4
S. V. Popov. The Gevrey boundary value problem for a third order equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/

[1] Dzhuraev T. D., Boundary Value Problems for Mixed and Mixed-Compound Equations, FAN, Tashkent, 1979 | MR

[2] Tersenov S. A., Parabolic Equations with Varying Time Direction, Nauka, Novosibirsk, 1985 | MR

[3] Pyatkov S. G., “On the properties of eigenfunctions of a spectral problem and their applications”, Correct Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Collect. Sci. Works, SO AN SSSR. Inst. Mat., Novosibirsk, 1984, 115-130

[4] Pyatkov S. G., “On the solvability of a boundary value problem for a parabolic equation with changing time direction”, Sov. Math., Dokl., 32 (1985), 895–897 | MR | Zbl

[5] Antipin V. I. and Popov S. V, “On smooth solutions to the Gevrey problem for third order equations”, Mat. Zamet. SVFU, 22:1 (2015), 3–12 | MR | Zbl

[6] Antipin V. I., “Solvability of a boundary value problems for operator-differential equations of mixed type”, Sib. Math. J., 54:2 (2013), 245–257 | MR | Zbl

[7] Kozhanov A. I. and Potapova S. V, “The conjugation problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:2 (2015), 51–59 | Zbl

[8] Cattabriga L., “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple”, Rend. Sem. Mat. Univ. Padova, 31 (1961), 1–45 | MR | Zbl

[9] Mikhailov L. G., Integral Equations With Homogeneous Kernel of Degree -1, Donish, Dushanbe, 1966 | MR

[10] Gokhberg I. Ts. and Feldman I. A., Convolution Equations and Projection Methods for Their Solution, Nauka, Moscow, 1971 | MR

[11] Muskhelishvili N. I., Singular Integral Equations, Nauka, Moscow, 1968 | MR

[12] Popov S. V, “On the behavior of an integral of Cauchy type at the ends of the contour integration and its application to boundary value problems for parabolic equations with changing time direction”, Mat. Zamet. SVFU, 23:2 (2016), 90–107