Mots-clés : Hölder space
@article{SVFU_2017_24_1_a4,
author = {S. V. Popov},
title = {The {Gevrey} boundary value problem for a third order equation},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {43--56},
year = {2017},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/}
}
S. V. Popov. The Gevrey boundary value problem for a third order equation. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a4/
[1] Dzhuraev T. D., Boundary Value Problems for Mixed and Mixed-Compound Equations, FAN, Tashkent, 1979 | MR
[2] Tersenov S. A., Parabolic Equations with Varying Time Direction, Nauka, Novosibirsk, 1985 | MR
[3] Pyatkov S. G., “On the properties of eigenfunctions of a spectral problem and their applications”, Correct Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Collect. Sci. Works, SO AN SSSR. Inst. Mat., Novosibirsk, 1984, 115-130
[4] Pyatkov S. G., “On the solvability of a boundary value problem for a parabolic equation with changing time direction”, Sov. Math., Dokl., 32 (1985), 895–897 | MR | Zbl
[5] Antipin V. I. and Popov S. V, “On smooth solutions to the Gevrey problem for third order equations”, Mat. Zamet. SVFU, 22:1 (2015), 3–12 | MR | Zbl
[6] Antipin V. I., “Solvability of a boundary value problems for operator-differential equations of mixed type”, Sib. Math. J., 54:2 (2013), 245–257 | MR | Zbl
[7] Kozhanov A. I. and Potapova S. V, “The conjugation problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:2 (2015), 51–59 | Zbl
[8] Cattabriga L., “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple”, Rend. Sem. Mat. Univ. Padova, 31 (1961), 1–45 | MR | Zbl
[9] Mikhailov L. G., Integral Equations With Homogeneous Kernel of Degree -1, Donish, Dushanbe, 1966 | MR
[10] Gokhberg I. Ts. and Feldman I. A., Convolution Equations and Projection Methods for Their Solution, Nauka, Moscow, 1971 | MR
[11] Muskhelishvili N. I., Singular Integral Equations, Nauka, Moscow, 1968 | MR
[12] Popov S. V, “On the behavior of an integral of Cauchy type at the ends of the contour integration and its application to boundary value problems for parabolic equations with changing time direction”, Mat. Zamet. SVFU, 23:2 (2016), 90–107