Stationary Galerkin method for the semilinear nonclassical equation of higher order with alternating time direction
Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a cylindrical domain $Q\subseteq \mathbb{R}^n$, we study a boundary value problem for the semilinear parabolic equation of odd order with alternating time direction. The theorem about the unique solvability of the boundary value problem is proved in the weighted Sobolev space. The stationary Galerkin method is applied to solve the problem and the error estimation for this method is obtained.
Keywords: stationary Galerkin method, approximate solution, inequality
Mots-clés : estimation.
@article{SVFU_2017_24_1_a2,
     author = {E. S. Efimova},
     title = {Stationary {Galerkin} method for the semilinear nonclassical equation of higher order with alternating time direction},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {16--25},
     year = {2017},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a2/}
}
TY  - JOUR
AU  - E. S. Efimova
TI  - Stationary Galerkin method for the semilinear nonclassical equation of higher order with alternating time direction
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 16
EP  - 25
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a2/
LA  - ru
ID  - SVFU_2017_24_1_a2
ER  - 
%0 Journal Article
%A E. S. Efimova
%T Stationary Galerkin method for the semilinear nonclassical equation of higher order with alternating time direction
%J Matematičeskie zametki SVFU
%D 2017
%P 16-25
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a2/
%G ru
%F SVFU_2017_24_1_a2
E. S. Efimova. Stationary Galerkin method for the semilinear nonclassical equation of higher order with alternating time direction. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 16-25. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a2/

[1] Tersenov S. A., Parabolic Equations with Varying Time Direction, Nauka, Novosibirsk, 1985 | MR

[2] Egorov I. E., Fedorov V. E., Nonclassical Higher Order Equations of Mathematical Physics, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 1995 | MR

[3] Beals R., Protopopescu V., “Half-range completeness for the Fokker–Planck equation”, J. Statist. Phys., 32:3 (1983), 565–584 | DOI | MR | Zbl

[4] Lions J.-L., Some Methods of Solving Nonlinear Boundary Value Problems, Mir, M., 1973 (in Russian) | MR

[5] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR

[6] Oleinik O. A., Radkevich E. V., Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo Mosk. un-ta, M., 2010; Oleinik O. A., Radkevich E. V., “Second order equations with nonnegative characteristic form”, Itogi Nauki, Ser. Mat. Anal., 1971, 7–252

[7] Kislov N. V., “Nonhomogeneous boundary value problems for differential-operator equations of mixed type and their applications”, Mat. Sb., 125:1 (1984), 19–37 | MR

[8] Larkin N. A., Novikov V. A., Yanenko N. N., Nonlinear Equations of Variable Type, Nauka, Novosibirsk, 1983 | MR

[9] Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 | MR

[10] Vinogradova P. V., Zarubin A. G., “Error estimation of Galerkin method for non-stationary equations”, J. Comput. Math. Math. Phys., 49:9 (2009), 1643–1651 | MR | Zbl

[11] Efimova E. S., Egorov I. E., Kolesova M. S., “Error estimate for the stationary Galerkin method applied to a semilinear parabolic equation with alternating time direction”, Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform., 14:3 (2014), 43–49 | Zbl

[12] Besov O. V., Il’in V. P., Nikolsky S. M., Integral Representations of Functions and Imbedding Theorems, Nauka, M., 1975 | MR