Axiomatization of intuitionistic logics defined by small frames
Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 6-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the tabular intuitionistic logics semantically characterized by the Kripke frames of the depths no greater than 3 and widths no greater than 2. The axiomatization of such basic logics is given; the lattice generated by them is constructed. Known methods make it possible, using given axiomatization, to specify the axiomatic of the remaining logics from the lattice.
Keywords: superintuitionistic logic, Kripke frame, axiomatization of logic.
@article{SVFU_2017_24_1_a1,
     author = {S. I. Bashmakov and M. I. Golovanov},
     title = {Axiomatization of intuitionistic logics defined by small frames},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {6--15},
     year = {2017},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a1/}
}
TY  - JOUR
AU  - S. I. Bashmakov
AU  - M. I. Golovanov
TI  - Axiomatization of intuitionistic logics defined by small frames
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 6
EP  - 15
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a1/
LA  - ru
ID  - SVFU_2017_24_1_a1
ER  - 
%0 Journal Article
%A S. I. Bashmakov
%A M. I. Golovanov
%T Axiomatization of intuitionistic logics defined by small frames
%J Matematičeskie zametki SVFU
%D 2017
%P 6-15
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a1/
%G ru
%F SVFU_2017_24_1_a1
S. I. Bashmakov; M. I. Golovanov. Axiomatization of intuitionistic logics defined by small frames. Matematičeskie zametki SVFU, Tome 24 (2017) no. 1, pp. 6-15. http://geodesic.mathdoc.fr/item/SVFU_2017_24_1_a1/

[1] Chagrov A. V., Zakharyaschev M. V., Modal logic, Oxford Univ. Press, Oxford, 1997 | MR | Zbl

[2] Rybakov V. V., Admissibility of logical inference rules, Elsevier Science Publ. B. V., Amsterdam; New York, 1997 | MR | Zbl