The stable analytical solution for the wave fields in the sphere
Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 91-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the well-known analytical solution to the problem of the wave fields in the sphere. It is shown that the use of the standard asymptotic behavior of the Bessel functions leads to interference in the solution. A new asymptotic expression for the Bessel functions is found which gives a stable analytical solution that allows one to obtain the exact solution. The homogeneous and inhomogeneous waves for the sphere are detected. We present some examples of analytical calculation of the full wave fields and the primary wave for the sphere.
Keywords: mathematical modeling in the sphere, stable analytical solution, full wave field, primary wave, new asymptotic behavior of Bessel functions, homogeneous and inhomogeneous waves for the sphere.
@article{SVFU_2016_23_3_a6,
     author = {A. G. Fatianov},
     title = {The stable analytical solution for the wave fields in the sphere},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {91--103},
     year = {2016},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a6/}
}
TY  - JOUR
AU  - A. G. Fatianov
TI  - The stable analytical solution for the wave fields in the sphere
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 91
EP  - 103
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a6/
LA  - ru
ID  - SVFU_2016_23_3_a6
ER  - 
%0 Journal Article
%A A. G. Fatianov
%T The stable analytical solution for the wave fields in the sphere
%J Matematičeskie zametki SVFU
%D 2016
%P 91-103
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a6/
%G ru
%F SVFU_2016_23_3_a6
A. G. Fatianov. The stable analytical solution for the wave fields in the sphere. Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 91-103. http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a6/

[1] Tikhonov A. N. and Samarskii A. A., Equations of mathematical physics, Nauka, Moscow, 1977 | MR

[2] James J., Faran Jr., “Sound scattering by solid cylinders and spheres”, J. Acoustic Soc. Amer, 3:4 (1951), 405–418 | MR

[3] Varadan V. V., Ma Y., Varadan V. K., Lakhtakia A., “Scattering of waves by spheres and cylinders”, Field representations and Introduction to Scattering, North-Holland, Amsterdam, 1991, 211–324 | MR

[4] Ávila-Carrera R., Sánchez-Sesma F. J., “Scattering and diffraction of elastic $P-$ and $S-$waves by a spherical obstacle: A review of the classical solution”, Geofys. Intern., 45:1 (2006), 3–21

[5] Aganyan G. M., Voevodin Vad. V., and Romanov S. Yu., “On applicability of layered models in solving 3D problems of ultrasonic tomography”, Vychisl. Metody i Programmirovanie, 14 (2013), 533–542

[6] Tolokonnikov L. A. and Rodionova G. A., “Diffraction of the spherical sonic wave on an elastic sphere with heterogeneous covering”, Izv. Tulsk. Gos. Univ., 2014, no. 3, 131–137

[7] Korneev V. A., Johnson L. R., “Scattering of elastic waves by a spherical inclusion”, Geophys. J. Int., 1993, Theory and numerical results, no. 115, 230–250 | DOI

[8] Fatyanov A. G., Numerical modeling of wave fields in an inhomogeneous sphere, Preprint, AN SSSR. SO, Comp. Center, Novosibirsk, 1981, 22 pp. | MR

[9] Shanjie Zhang, Jian-Ming Jin., Computation of special functions, Wiley, 1996 | MR | Zbl

[10] Fatianov A. G., Mikhailenko B. G., “Numerically-analytical method for calculation of theoretical seismograms in layered-inhomogeneous inelastic media”, Geophys. data inversion methods and applications, Proc. 7th Intern. Math. Geophys. Seminar (Berlin, February 8–11), Theory and Practice of Appl. Geophys., 1989, 499–530

[11] Burmin V.Yu., Fat'yanov A. G., “Analytical modeling of wave fields at extremely long distances and experimental research of water waves”, Izvestiya, Physics of the Solid Earth, 45:4 (2009), 313–325 | DOI

[12] Fatianov A. G., “A semi-analytical method to solve direct dynamic problems in layered media”, Dokl. Akad. Nauk, 310:2 (1990), 323–327 | MR

[13] Fatyanov A. G., “Analytical Modeling of Superlong-Distance Wave Fields in the Media with Composite Subsurface Geometries”, Yak. Math. Journal, 22 (2015), 86–96 | Zbl

[14] Aki K., Richards P. G., Quantitative seismology. Theory and methods, W. H. Freeman and Company, San Francisco, 1980