On a non-standard conjugation problem for elliptic equations
Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 70-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the regular solvability of the conjugation problem for elliptic equations with non-standard boundary conditions and sewing conditions on the plane $x = 0$. Let $Q$ be a parallelepiped. On the bottom of $Q$ we give a boundary condition for $u(x, t, a)$ in the part where $x>0$ and for $u_t(x, t, a)$ in the part where $x<0$. On the plane $x=0$ these conditions “intertwist”, so on the top of $Q$ we give a boundary condition for $u(x, t, a)$ in the part where $x<0$ and for $u_t(x, t, a)$ in the part where $x > 0$. Combining the regularization method and natural parameter continuation, we prove the uniqueness and existence theorems for regular solutions of this non-standard conjugation problem.
Mots-clés : conjugation problem, elliptic equation
Keywords: regular solution, sewing condition, discontinuous boundary conditions.
@article{SVFU_2016_23_3_a4,
     author = {A. I. Kozhanov and S. V. Potapova},
     title = {On a non-standard conjugation problem for elliptic equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {70--80},
     year = {2016},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - S. V. Potapova
TI  - On a non-standard conjugation problem for elliptic equations
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 70
EP  - 80
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a4/
LA  - ru
ID  - SVFU_2016_23_3_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A S. V. Potapova
%T On a non-standard conjugation problem for elliptic equations
%J Matematičeskie zametki SVFU
%D 2016
%P 70-80
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a4/
%G ru
%F SVFU_2016_23_3_a4
A. I. Kozhanov; S. V. Potapova. On a non-standard conjugation problem for elliptic equations. Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 70-80. http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a4/

[1] Dubinskii Yu. A., “Weak convergence for nonlinear elliptic and parabolic equations”, Mat. Sb., 67:4 (1965), 609–642

[2] Oleinik O. A., Radkevich E. V., “Second order equations with nonnegative characteristic form”, Mat. Anal. 1969, Itogi Nauki. Ser. Matematika, VINITI, Moscow, 1971, 7–252 | MR | Zbl

[3] Gevrey M., “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl, 9:6 (1913), 305–478

[4] Larkin N., Novikov B., and Yanenko N., Non-linear mixed type equations, Nauka, Novosibirsk, 1983 | MR

[5] Tersenov S. A., The parabolic equations with changing time direction, Inst. Math., Novosibirsk, 1985 | MR

[6] Egorov I. E., Pyatkov S. G., and Popov S. V., Nonclassical operator-differential equations, Nauka, Novosibirsk, 2000 | MR

[7] Kislov N. V. and Pulkin I. S., “On existence and uniqueness of a week solution to Gevrey problem with generalized sewing conditions”, Vestn. MEI, 2002, no. 6, 88–92

[8] Petrushko I. M. and Chernykh E. V., “About parabolic equations of second order with changing time direction”, Vestn. MEI, 2003, no. 6, 85–93

[9] Juraev T. D., Boundary value problems for equations of mixed and mixed-composite types, FAN, Tashkent, 1979 | MR

[10] Pyatkov S. G., Popov S., Antipin V. I., “On solvability of boundary value problem for kinetic operator-differential equations”, Integral Equ. Operator Theory, 80:4 (2014), 557–580 | DOI | MR | Zbl

[11] Antipin V. I., “Solvability of a boundary value problem for operator-differential equations of mixed type”, Sib. Math. J., 54:2 (2013), 185–195 | DOI | MR | Zbl

[12] Potapova S. V., “Boundary value problems for pseudohyperbolic equations with a variable time direction”, TWMS J. Pure Appl. Math., 3:1 (2012), 75–91 | MR | Zbl

[13] Trenogin V. A., Functional analysis, Nauka, Moscow, 1980 | MR

[14] Yakubov S. Ya., Linear differential-operator equations and their applications, Elm, Baku, 1985