Non-random functions and solutions of Langevin-type stochastic differential equations
Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 55-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a solution of a Langevine-type stochastic differential equation (SDE) with a non-random function depending on its solution. We determine conditions for such non-random function to appear. Using the solution of a homogeneous SDE, we obtain a solution of the generalized Langevine-type SDE by reducing it to a linear one. We construct a stochastic process with non-random modulus in square which is not a solution to an Ito-type SDE.
Mots-clés : Langevine-type equation, Ito's formula
Keywords: Brownian motion, stochastic differential equation, deterministic modulus in square for velocity, analytical solution.
@article{SVFU_2016_23_3_a3,
     author = {E. V. Karachanskaya and A. P. Petrova},
     title = {Non-random functions and solutions of {Langevin-type} stochastic differential equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {55--69},
     year = {2016},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a3/}
}
TY  - JOUR
AU  - E. V. Karachanskaya
AU  - A. P. Petrova
TI  - Non-random functions and solutions of Langevin-type stochastic differential equations
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 55
EP  - 69
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a3/
LA  - ru
ID  - SVFU_2016_23_3_a3
ER  - 
%0 Journal Article
%A E. V. Karachanskaya
%A A. P. Petrova
%T Non-random functions and solutions of Langevin-type stochastic differential equations
%J Matematičeskie zametki SVFU
%D 2016
%P 55-69
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a3/
%G ru
%F SVFU_2016_23_3_a3
E. V. Karachanskaya; A. P. Petrova. Non-random functions and solutions of Langevin-type stochastic differential equations. Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 55-69. http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a3/

[1] Gihman I. I. and Skorohod A. V., Stochastic differential equations, Springer-Verl., Berlin; New York, 1972 | MR | MR | Zbl

[2] Dubko V. A., The first integral of a stochastic differential equations system, Preprint, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev, 1978 | MR

[3] Dubko V. A., Questions of theory and appplication of stochastic differential equations, DVNC Akad. Nauk, Vladivostok, 1989 | MR

[4] Dubko V. A. and Chalykh E. V., “Construction of an analytic solution of one class of Langevin-type equations with orthogonal random actions”, Ukr. Mat. Zh., 50:4 (1998), 588–589 | DOI | MR | Zbl

[5] Shiryaev A. N., Essentials of stochastic finance: Facts, models, theory, Advanced Series on Statistical Science Applied Probability, 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1999 | DOI | MR

[6] Balescu R., Equilibrium and nonequilibrium statistical mechanics, John Wiley Sons, New York, 1975 | MR | MR

[7] Klimontovich Yu. L., “Nonlinear Brownian motion”, Usp. fiz. nauk, 164:8 (1994), 811–844 | DOI

[8] Itô K. and McKean H. P. Jr., Diffusion processes and their sample paths, Springer-Verl., New York and Berlin, 1965 | MR | Zbl

[9] Dubko V. A. and Karachanskaya E. V., Specific sections of the theory of stochastic differential equations, Pacific Nat. Univ., Khabarovsk, 2013 | MR

[10] McKean H. P., Jr., Stochastic Integrals, AMS Chelsea Publishing Series, 353, Academic Press, New York and London, 1969 | MR | MR

[11] Levakov A. A., Stochastic differential equations, Belarusian Gos. Univ., Minsk, 2009

[12] Pugachev V. S. and Sinitsyn I. N., Theory of stochastic systems, Logos, Moscow, 2004 | MR

[13] Miller B. M. and Pankov A. S., Theory of random processes in examples and problems, Fizmatlit, Moscow, 2002

[14] Karachanskaya E. V., Stochastic processes with invariants, Pacific Nat. Univ., Pacific Nat. Univ., 2014

[15] Risken H., The Fokker-Planck equation: methods of solution and applications, Springer-Verl., Berlin, 1984 | MR | Zbl

[16] Demidovich B. P., Lectures on mathematical stability theory, Nauka, Moscow, 1967 | MR

[17] Chalykh E. V., “On one generalization of the Langevin equation with determinate modulus of velocity”, Ukr. Mat. Zh., 50:7 (1998), 1004–1006 | MR | Zbl