@article{SVFU_2016_23_3_a0,
author = {M. G. Gadoev and F. S. Iskhokov},
title = {On invertibility of a class of degenerate differential operators in the {Lebesgue} space},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {3--26},
year = {2016},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/}
}
TY - JOUR AU - M. G. Gadoev AU - F. S. Iskhokov TI - On invertibility of a class of degenerate differential operators in the Lebesgue space JO - Matematičeskie zametki SVFU PY - 2016 SP - 3 EP - 26 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/ LA - ru ID - SVFU_2016_23_3_a0 ER -
M. G. Gadoev; F. S. Iskhokov. On invertibility of a class of degenerate differential operators in the Lebesgue space. Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 3-26. http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/
[1] Everitt W. N., Giertz M., “Inequalities and separation for Schrodinger-type operators in $L_2(R^n)$”, R. Soc. Edinb., Sect. A, Math., v. 79, 1977, 257–265 | MR | Zbl
[2] Brown R. C., Hinton D. B., “Two separation criteria for second order ordinary or partial differential operators”, Math. Bohem, 124:2-3 (1999), 273–292 | MR | Zbl
[3] Otelbaev M., “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Proc. Steklov Inst. Math., 161 (1984), 213–239 | MR | Zbl | Zbl
[4] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170 (1987), 39–81 | MR
[5] Boimatov K. Kh., “Strongly degenerate elliptic differential operators of the Triebel class”, Soviet Math. (Iz. VUZ. Matematika), 1988, no. 8, 53–63 | MR
[6] Boimatov K. Kh., “Coercivity properties of strongly degenerate elliptic equations”, Dokl. Akad. Nauk, Math., 47:3 (1993), 489–497 | MR | MR
[7] Zayed E. M. E., Mohamed A. S., Atia H. A., “Inequalities and separation for the Laplace-Beltrami differential operator in Hilbert spaces”, J. Math. Anal. Appl., 336 (2007), 81–92 | DOI | MR | Zbl
[8] Lizorkin P. I., “Estimates of mixed and intermediate derivatives in weighted $L_p$-norms”, Proc. Steklov Inst. Math., 156 (1983), 141–153 | MR | Zbl | Zbl
[9] Iskhokov S. A., “Smoothness of generalized solutions to elliptic equations with non-exponential degeneracies”, Dokl. Math., 63:3 (2001), 332–338 | MR | MR | Zbl
[10] Iskhokov S. A., “Smoothness of the generalized solution of an elliptic equation with non-power degeneracy”, Differ. Equ., 39:11 (2003), 1618–1625 | DOI | MR | Zbl
[11] Iskhokov S. A. Gadoev M. G. and Yakushev I. A., “Garding’s inequality for higher order elliptic operators with nonpower degeneration”, Dokl. Math., 85:2 (2012), 215–218 | DOI | MR | Zbl
[12] Kolmogorov A. N. and Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, Moscow, 1976 | MR