On invertibility of a class of degenerate differential operators in the Lebesgue space
Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 3-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the right-hand regularizing operator for a class of partial differential operators in non-divergent form in an arbitrary (bounded or unbounded) domain in the $n$-dimensional Euclidian space with non-power degeneracy on the boundary. On its base we prove the existence of the inverse operator in the Lebesgue space.
Keywords: partial differential operator, non-power degeneration, right-hand regularizing operator, inverse operator, partition of unity.
@article{SVFU_2016_23_3_a0,
     author = {M. G. Gadoev and F. S. Iskhokov},
     title = {On invertibility of a class of degenerate differential operators in the {Lebesgue} space},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--26},
     year = {2016},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/}
}
TY  - JOUR
AU  - M. G. Gadoev
AU  - F. S. Iskhokov
TI  - On invertibility of a class of degenerate differential operators in the Lebesgue space
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 3
EP  - 26
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/
LA  - ru
ID  - SVFU_2016_23_3_a0
ER  - 
%0 Journal Article
%A M. G. Gadoev
%A F. S. Iskhokov
%T On invertibility of a class of degenerate differential operators in the Lebesgue space
%J Matematičeskie zametki SVFU
%D 2016
%P 3-26
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/
%G ru
%F SVFU_2016_23_3_a0
M. G. Gadoev; F. S. Iskhokov. On invertibility of a class of degenerate differential operators in the Lebesgue space. Matematičeskie zametki SVFU, Tome 23 (2016) no. 3, pp. 3-26. http://geodesic.mathdoc.fr/item/SVFU_2016_23_3_a0/

[1] Everitt W. N., Giertz M., “Inequalities and separation for Schrodinger-type operators in $L_2(R^n)$”, R. Soc. Edinb., Sect. A, Math., v. 79, 1977, 257–265 | MR | Zbl

[2] Brown R. C., Hinton D. B., “Two separation criteria for second order ordinary or partial differential operators”, Math. Bohem, 124:2-3 (1999), 273–292 | MR | Zbl

[3] Otelbaev M., “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Proc. Steklov Inst. Math., 161 (1984), 213–239 | MR | Zbl | Zbl

[4] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170 (1987), 39–81 | MR

[5] Boimatov K. Kh., “Strongly degenerate elliptic differential operators of the Triebel class”, Soviet Math. (Iz. VUZ. Matematika), 1988, no. 8, 53–63 | MR

[6] Boimatov K. Kh., “Coercivity properties of strongly degenerate elliptic equations”, Dokl. Akad. Nauk, Math., 47:3 (1993), 489–497 | MR | MR

[7] Zayed E. M. E., Mohamed A. S., Atia H. A., “Inequalities and separation for the Laplace-Beltrami differential operator in Hilbert spaces”, J. Math. Anal. Appl., 336 (2007), 81–92 | DOI | MR | Zbl

[8] Lizorkin P. I., “Estimates of mixed and intermediate derivatives in weighted $L_p$-norms”, Proc. Steklov Inst. Math., 156 (1983), 141–153 | MR | Zbl | Zbl

[9] Iskhokov S. A., “Smoothness of generalized solutions to elliptic equations with non-exponential degeneracies”, Dokl. Math., 63:3 (2001), 332–338 | MR | MR | Zbl

[10] Iskhokov S. A., “Smoothness of the generalized solution of an elliptic equation with non-power degeneracy”, Differ. Equ., 39:11 (2003), 1618–1625 | DOI | MR | Zbl

[11] Iskhokov S. A. Gadoev M. G. and Yakushev I. A., “Garding’s inequality for higher order elliptic operators with nonpower degeneration”, Dokl. Math., 85:2 (2012), 215–218 | DOI | MR | Zbl

[12] Kolmogorov A. N. and Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, Moscow, 1976 | MR