Mots-clés : Hölder space
@article{SVFU_2016_23_2_a6,
author = {S. V. Popov},
title = {On behavior of the {Cauchy-type} integral at the endpoints of the integration contour and its application to boundary value problems for parabolic equations with changing direction of time},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {90--107},
year = {2016},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a6/}
}
TY - JOUR AU - S. V. Popov TI - On behavior of the Cauchy-type integral at the endpoints of the integration contour and its application to boundary value problems for parabolic equations with changing direction of time JO - Matematičeskie zametki SVFU PY - 2016 SP - 90 EP - 107 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a6/ LA - ru ID - SVFU_2016_23_2_a6 ER -
%0 Journal Article %A S. V. Popov %T On behavior of the Cauchy-type integral at the endpoints of the integration contour and its application to boundary value problems for parabolic equations with changing direction of time %J Matematičeskie zametki SVFU %D 2016 %P 90-107 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a6/ %G ru %F SVFU_2016_23_2_a6
S. V. Popov. On behavior of the Cauchy-type integral at the endpoints of the integration contour and its application to boundary value problems for parabolic equations with changing direction of time. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 90-107. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a6/
[1] Gakhov F. D., Boundary value problems, Addison-Wesley, Reading, MA, 1966 | MR | MR
[2] Muskhelishvili N. I., Singular integral equations, Wolters-Noordhoff, Groningen, 1972 | MR | MR
[3] Tersenov S. A., Parabolic equations with changing time direction, Nauka, Novosibirsk, 1985 | MR
[4] Monakhov V. N., Free-surface boundary value problems for elliptic systems of equations, Nauka, Novosibirsk, 1977 | MR
[5] Vekua N. P., Systems of singular integral equations, Noordhoff, Groningen, 1967 | MR | Zbl
[6] Popov S. V., “On smoothness of solutions to parabolic equations with changing evolution direction”, Dokl. Math., 400:1 (2005), 29–31 | MR
[7] Popov S. V., Solvability of boundary value problems for a parabolic equation of higher order with changing time direction, Dep. v VINITI 07.12.88, No8646–B88, Ed. Sib. Mat. Zh., Novosibirsk, 1988, 56 pp.
[8] Popov S. V. and Potapova S. V., “Hölder classes of solutions to 2n-parabolic equations with a varying direction of evolution”, Dokl. Math., 79:1 (2009), 100-102 | DOI | MR | Zbl
[9] Popov S. V., “Hölder classes of solutions to forward-backward parabolic equations of the fourth order with variable gluing conditions”, Yak. Math. J., 21:2 (2014), 73–83 | Zbl
[10] Monakhov V. N. and Popov S. V., “Contact boundary value problems of mathematical physics”, Dyn. Splosh. Sredy, 2000, no. 116, 62–72 | Zbl
[11] Egorov I. E., Pyatkov S. G., and Popov S. V., Nonclassical operator-differential equations, Nauka, Novosibirsk, 2000 | MR
[12] Kislov N. V. and Pulkina I. S., “A boundary value problem with generalized gluing conditions for a parabolic type equation”, Vestn. MPEI, 2000, no. 6, 51–59
[13] Cattabriga L., “Problemi al. contorno per equazioni paraboliche di ordine 2n”, Rend. Semin. Mat. Univ. Padova, 28:2 (1958), 376–401 | MR | Zbl
[14] Cattabriga L., “Equazioni paraboliche in due variabili. I”, Rend. Semin. Fac. Sci. Univ. Cagliari, 31:1 (1961), 48–79 ; Cattabriga L., “Equazioni paraboliche in due variabili. II”, Rend. Semin. Fac. Sci. Univ. Cagliari, 32:3-4 (1962), 254–267 | MR | Zbl | MR | Zbl
[15] Ladyzhenskaya O. A., Solonnikov V. A., and Uraltseva N. N.,, Linear and quasilinear parabolic equations, Nauka, Moscow, 1967 | MR
[16] Solonnikov V. A., “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 1–184 | MR