@article{SVFU_2016_23_2_a5,
author = {S. I. Mitrokhin},
title = {On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {78--89},
year = {2016},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/}
}
TY - JOUR AU - S. I. Mitrokhin TI - On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential JO - Matematičeskie zametki SVFU PY - 2016 SP - 78 EP - 89 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/ LA - ru ID - SVFU_2016_23_2_a5 ER -
%0 Journal Article %A S. I. Mitrokhin %T On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential %J Matematičeskie zametki SVFU %D 2016 %P 78-89 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/ %G ru %F SVFU_2016_23_2_a5
S. I. Mitrokhin. On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/
[1] Sadovniči\v{i} V. A., “The trace of ordinary differential operators of high order”, Sb. Math., 1:2 (1967), 263–288 | DOI
[2] Chernyatin V. A., “Higher-order spectral asymptotics for the Sturm–Liouville operator”, Differ. Equ., 38:2 (2002), 217–227 | DOI | MR | Zbl
[3] Lidski\v{i} V. B. and Sadovniči\v{i} V. A., “Asymptotic formulas for the zeros of a class of entire functions”, Sb. Math., 4:4 (1968), 519–527 | DOI | Zbl
[4] Il’in V. A., “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Math. Notes, 22:5 (1977), 870–882
[5] Mitrokhin S. I., “Formulas for the regularized traces of the second order differential operators with discontinuous coefficients”, Mosc. Univ. Math. Bull., 41:6 (1986), 1–5 | MR | MR | Zbl
[6] Gottlieb H. P.W., “Iso-spectral operators: some model examples with discontinuous coefficients”, J. Math. Anal. Appl., 132 (1988), 123–137 | DOI | MR | Zbl
[7] Budaev V. D., “On the unconditional basis property on a closed interval of systems of eigen and adjoint functions for the operator of the second order with discontinuous coefficients”, Differ. Uravn., 223:6 (1987), 941–952
[8] Mitrokhin S. I., “Spectral properties of second-order differential operators with a discontinuous positive weight function”, Dokl. Math., 56:2 (1997), 652–654 | MR | Zbl
[9] Vinokurov V. A. and Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the boundary value Sturm–Liouville problem on a segment with integrable potential”, Differ. Uravn., 34:10 (1998), 1423–1427 | MR
[10] Mitrokhiun S. I., “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufa Math. J., 3:4 (2011), 92–112 | MR | Zbl
[11] Mitrokhin S. I., “The asymptotics of the eigenvalues of a tenth-order differential operator with integrable potentia”, Uspekhi Sovrem. Estestvozn., 2010, no. 3, 146–149
[12] Mitrokhin S. I., “The asymptotics of the eigenvalues of a fourth-order differential operator with summable coefficients”, Mosc. Univ. Math. Bull., 64:3 (2009), 102–104 | DOI | MR | Zbl
[13] Mitrokhin S. I., “On the spectral properties of odd-order differential operators with integrable potential”, Differ. Equ., 47:12 (2011), 1833–1836 | DOI | MR | Zbl
[14] Naimark M. A., Linear differential operators, Nauka, Moscow, 1969 | MR
[15] Fedoryuk M. V., Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983 | MR
[16] Mitrokhin S. I., “Spectral properties of boundary value problems for functional-differential equations with integrable coefficients”, Differ. Equ., 46:8 (2010), 1095–1103 | DOI | MR | Zbl
[17] Levitan B. M. and Sargsyan I. S., Introduction to the spectral theory, Nauka, Moscow, 1970 | MR
[18] Bellman R. and Cooke K. L., Differential-difference equations, Mir, Moscow, 1967 | MR
[19] Lidskii B. V. and Sadovnichii V. A., “Regularized sums of zeros of a class of entire functions”, Function. Anal. Appl., 1:2 (1967), 52–59 | MR | Zbl
[20] Sadovnichii V. A. and Lyubishkin V. A., “Some new results in the theory of regularized traces of differential operators”, Differ. Equ., 18:1 (1982), 109–116 | MR
[21] Sadovnichii V. A., Lyubishkin V. A., and Belabassi Yu. O., “On regularized sums of zeros of an entire function of some class”, Dokl. Math., 254:6 (1980), 1346–1348 | MR
[22] Mitrokhin S. I., “On spectral properties of a differential operator with integrable potential and smooth weight function”, Vestn. Samar. Gos. Univ., Estestvennonauch. Ser., 2008, no. 8, 172–187