On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential
Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 78-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for the fifth-order differential operator with separated boundary conditions is considered. The potential of the operator is a summable function on the segment. For large values of the spectral parameter we obtain the asymptotic behavior of the corresponding differential equation. The equation on eigenvalues of the considered operator and the indicator diagram of this equation are studied. A new method for finding an asymptotics of eigenvalues of the studied operator is offered.
Keywords: boundary value problem, differential operator, separated boundary conditions, summable potential, asymptotics of the eigenvalues, eigenfunction.
@article{SVFU_2016_23_2_a5,
     author = {S. I. Mitrokhin},
     title = {On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {78--89},
     year = {2016},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 78
EP  - 89
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/
LA  - ru
ID  - SVFU_2016_23_2_a5
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential
%J Matematičeskie zametki SVFU
%D 2016
%P 78-89
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/
%G ru
%F SVFU_2016_23_2_a5
S. I. Mitrokhin. On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 78-89. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a5/

[1] Sadovniči\v{i} V. A., “The trace of ordinary differential operators of high order”, Sb. Math., 1:2 (1967), 263–288 | DOI

[2] Chernyatin V. A., “Higher-order spectral asymptotics for the Sturm–Liouville operator”, Differ. Equ., 38:2 (2002), 217–227 | DOI | MR | Zbl

[3] Lidski\v{i} V. B. and Sadovniči\v{i} V. A., “Asymptotic formulas for the zeros of a class of entire functions”, Sb. Math., 4:4 (1968), 519–527 | DOI | Zbl

[4] Il’in V. A., “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Math. Notes, 22:5 (1977), 870–882

[5] Mitrokhin S. I., “Formulas for the regularized traces of the second order differential operators with discontinuous coefficients”, Mosc. Univ. Math. Bull., 41:6 (1986), 1–5 | MR | MR | Zbl

[6] Gottlieb H. P.W., “Iso-spectral operators: some model examples with discontinuous coefficients”, J. Math. Anal. Appl., 132 (1988), 123–137 | DOI | MR | Zbl

[7] Budaev V. D., “On the unconditional basis property on a closed interval of systems of eigen and adjoint functions for the operator of the second order with discontinuous coefficients”, Differ. Uravn., 223:6 (1987), 941–952

[8] Mitrokhin S. I., “Spectral properties of second-order differential operators with a discontinuous positive weight function”, Dokl. Math., 56:2 (1997), 652–654 | MR | Zbl

[9] Vinokurov V. A. and Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the boundary value Sturm–Liouville problem on a segment with integrable potential”, Differ. Uravn., 34:10 (1998), 1423–1427 | MR

[10] Mitrokhiun S. I., “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufa Math. J., 3:4 (2011), 92–112 | MR | Zbl

[11] Mitrokhin S. I., “The asymptotics of the eigenvalues of a tenth-order differential operator with integrable potentia”, Uspekhi Sovrem. Estestvozn., 2010, no. 3, 146–149

[12] Mitrokhin S. I., “The asymptotics of the eigenvalues of a fourth-order differential operator with summable coefficients”, Mosc. Univ. Math. Bull., 64:3 (2009), 102–104 | DOI | MR | Zbl

[13] Mitrokhin S. I., “On the spectral properties of odd-order differential operators with integrable potential”, Differ. Equ., 47:12 (2011), 1833–1836 | DOI | MR | Zbl

[14] Naimark M. A., Linear differential operators, Nauka, Moscow, 1969 | MR

[15] Fedoryuk M. V., Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983 | MR

[16] Mitrokhin S. I., “Spectral properties of boundary value problems for functional-differential equations with integrable coefficients”, Differ. Equ., 46:8 (2010), 1095–1103 | DOI | MR | Zbl

[17] Levitan B. M. and Sargsyan I. S., Introduction to the spectral theory, Nauka, Moscow, 1970 | MR

[18] Bellman R. and Cooke K. L., Differential-difference equations, Mir, Moscow, 1967 | MR

[19] Lidskii B. V. and Sadovnichii V. A., “Regularized sums of zeros of a class of entire functions”, Function. Anal. Appl., 1:2 (1967), 52–59 | MR | Zbl

[20] Sadovnichii V. A. and Lyubishkin V. A., “Some new results in the theory of regularized traces of differential operators”, Differ. Equ., 18:1 (1982), 109–116 | MR

[21] Sadovnichii V. A., Lyubishkin V. A., and Belabassi Yu. O., “On regularized sums of zeros of an entire function of some class”, Dokl. Math., 254:6 (1980), 1346–1348 | MR

[22] Mitrokhin S. I., “On spectral properties of a differential operator with integrable potential and smooth weight function”, Vestn. Samar. Gos. Univ., Estestvennonauch. Ser., 2008, no. 8, 172–187