Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack
Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider equilibrium problems for an inhomogeneous three-dimensional body with a crack at the inclusion-matrix interface. The matrix of the plate is assumed to be elastic. The boundary condition on the crack curve is given in the form of inequality and describes mutual nonpenetration of the crack faces. We analyze the dependence of solutions on the size of the rigid inclusion. It is shown that as the size of the rigid inclusion's volume tends to zero the solutions of the corresponding equilibrium problems converge to the solution of the equilibrium problem for a body containing a thin rigid delaminated inclusion. The existence of the solution to the optimal control problem is proved. For that problem, the size parameter of the rigid inclusion is chosen as the control function, while the cost functional is an arbitrary continuous functional.
Keywords: crack, rigid inclusion, variational inequality, energy functional, nonlinear boundary conditions.
@article{SVFU_2016_23_2_a3,
     author = {N. P. Lazarev},
     title = {Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {51--64},
     year = {2016},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 51
EP  - 64
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/
LA  - ru
ID  - SVFU_2016_23_2_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack
%J Matematičeskie zametki SVFU
%D 2016
%P 51-64
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/
%G ru
%F SVFU_2016_23_2_a3
N. P. Lazarev. Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/

[1] Maiti M., “On the extension of a crack due to rigid inclusions”, Int. J. Fracture, 15 (1979), 389–393 | DOI

[2] Mossakowsky V. I. and Rybka M. T., “A generalization of Griffiths–Sneddon criterion in case of nonhomogeneous body”, Prikl. Mat. Mekh., 28:6 (1964), 1061–1069

[3] Xiao Z. M., Chen B. J., “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fracture, 108 (2001), 193–205 | DOI

[4] Erdogan F., Gupta G. D., Ratwani M., “Interaction between a circular inclusion and an arbitrarily oriented crack”, ASME J. Appl. Mech, 41. (1974), 1007–1013 | DOI | Zbl

[5] Sendeckyj G. P., “Interaction of cracks with rigid inclusions in longitudinal shear deformation”, Int. J. Fracture Mech V. 101., 1974, 45–52 | DOI

[6] Loygering G. and Khludnev A. M., “On the equilibrium of elastic bodies containing thin rigid inclusions”, Dokl. Math., 43:1 (2010), 1–4 | MR

[7] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 2015 | DOI | MR

[8] Popova T. S., “The equilibrium problem for a viscoelastic body with a crack and a thin rigid inclusion”, Yak. Math. J., 21:2 (2014), 84–95 | Zbl

[9] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[10] Rudoy E. M., “Sensitivity analysis for the solution of the problem of equilibrium of elastic bodies with a thin rigid inclusion to change of the region shape”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:2 (2014), 69–87

[11] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[12] Neustroeva N. V., “The problem on equilibrium of an elastic plate containing an inclined crack on the boundary of rigid inclutson”, Sib. Zh. Ind. Mat., 18:2 (2015), 74–84 | MR | Zbl

[13] Shcherbakov V. V., “On the problem of shape control of thin inclusions in elastic bodies”, Sib. Zh. Ind. Mat., 16:1 (2013), 138–147

[14] Rotanova T. A., “The contact plates whose rigid inclusions overlook the border”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2011, no. 3, 99–107

[15] Khludnev A. M., “The problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Izv. Akad. Nauk, Mekh. Tverd. Tela, 2010, no. 5, 98–110

[16] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Southampton; Boston, 2000

[17] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech., A, Solids, 29:3 (2010), 392–399 | DOI | MR

[18] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[19] Khludnev A. M., Problems of elasticity theory in nonsmooth domains, Fizmatlit, Moscow, 2010

[20] Khludnev A. M., “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 14:1 (2011), 114–126 | Zbl

[21] Lazarev N. P., “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech, 96:4 (2015), 509–518 | DOI | MR

[22] Adams R. A., Fournier J. J. F., “Sobolev spaces”, Pure Appl. Math., Acad. Press, 140, New York, 2003 | MR | Zbl