@article{SVFU_2016_23_2_a3,
author = {N. P. Lazarev},
title = {Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {51--64},
year = {2016},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/}
}
TY - JOUR AU - N. P. Lazarev TI - Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack JO - Matematičeskie zametki SVFU PY - 2016 SP - 51 EP - 64 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/ LA - ru ID - SVFU_2016_23_2_a3 ER -
%0 Journal Article %A N. P. Lazarev %T Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack %J Matematičeskie zametki SVFU %D 2016 %P 51-64 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/ %G ru %F SVFU_2016_23_2_a3
N. P. Lazarev. Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a3/
[1] Maiti M., “On the extension of a crack due to rigid inclusions”, Int. J. Fracture, 15 (1979), 389–393 | DOI
[2] Mossakowsky V. I. and Rybka M. T., “A generalization of Griffiths–Sneddon criterion in case of nonhomogeneous body”, Prikl. Mat. Mekh., 28:6 (1964), 1061–1069
[3] Xiao Z. M., Chen B. J., “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, Int. J. Fracture, 108 (2001), 193–205 | DOI
[4] Erdogan F., Gupta G. D., Ratwani M., “Interaction between a circular inclusion and an arbitrarily oriented crack”, ASME J. Appl. Mech, 41. (1974), 1007–1013 | DOI | Zbl
[5] Sendeckyj G. P., “Interaction of cracks with rigid inclusions in longitudinal shear deformation”, Int. J. Fracture Mech V. 101., 1974, 45–52 | DOI
[6] Loygering G. and Khludnev A. M., “On the equilibrium of elastic bodies containing thin rigid inclusions”, Dokl. Math., 43:1 (2010), 1–4 | MR
[7] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 2015 | DOI | MR
[8] Popova T. S., “The equilibrium problem for a viscoelastic body with a crack and a thin rigid inclusion”, Yak. Math. J., 21:2 (2014), 84–95 | Zbl
[9] Khludnev A. M., Novotny A. A., Sokolowski J., Zochowski A., “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[10] Rudoy E. M., “Sensitivity analysis for the solution of the problem of equilibrium of elastic bodies with a thin rigid inclusion to change of the region shape”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:2 (2014), 69–87
[11] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[12] Neustroeva N. V., “The problem on equilibrium of an elastic plate containing an inclined crack on the boundary of rigid inclutson”, Sib. Zh. Ind. Mat., 18:2 (2015), 74–84 | MR | Zbl
[13] Shcherbakov V. V., “On the problem of shape control of thin inclusions in elastic bodies”, Sib. Zh. Ind. Mat., 16:1 (2013), 138–147
[14] Rotanova T. A., “The contact plates whose rigid inclusions overlook the border”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2011, no. 3, 99–107
[15] Khludnev A. M., “The problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Izv. Akad. Nauk, Mekh. Tverd. Tela, 2010, no. 5, 98–110
[16] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT-Press, Southampton; Boston, 2000
[17] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech., A, Solids, 29:3 (2010), 392–399 | DOI | MR
[18] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[19] Khludnev A. M., Problems of elasticity theory in nonsmooth domains, Fizmatlit, Moscow, 2010
[20] Khludnev A. M., “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 14:1 (2011), 114–126 | Zbl
[21] Lazarev N. P., “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech, 96:4 (2015), 509–518 | DOI | MR
[22] Adams R. A., Fournier J. J. F., “Sobolev spaces”, Pure Appl. Math., Acad. Press, 140, New York, 2003 | MR | Zbl