On some spectral properties of a class of degenerate elliptic differential operators
Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 31-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some spectral properties are investigated for a class of degenerate-elliptic operators A with singular matrix coefficients generated by noncoercive sesquilinear forms. Operator A is considered in the Hilbert space $L_2(\Omega)^l$, where $\Omega\subset R^n$ is a limit-tube domain and $l>0$ is an integer.
Keywords: spectral properties, degenerate-elliptic operator, noncoercitive sesquilinear form, limit-cylindrical $(x)$ domain, resolvent of generalized Dirichlet problem.
@article{SVFU_2016_23_2_a2,
     author = {S. A. Iskhokov and M. G. Gadoev and M. N. Petrova},
     title = {On some spectral properties of a class of degenerate elliptic differential operators},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {31--50},
     year = {2016},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a2/}
}
TY  - JOUR
AU  - S. A. Iskhokov
AU  - M. G. Gadoev
AU  - M. N. Petrova
TI  - On some spectral properties of a class of degenerate elliptic differential operators
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 31
EP  - 50
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a2/
LA  - ru
ID  - SVFU_2016_23_2_a2
ER  - 
%0 Journal Article
%A S. A. Iskhokov
%A M. G. Gadoev
%A M. N. Petrova
%T On some spectral properties of a class of degenerate elliptic differential operators
%J Matematičeskie zametki SVFU
%D 2016
%P 31-50
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a2/
%G ru
%F SVFU_2016_23_2_a2
S. A. Iskhokov; M. G. Gadoev; M. N. Petrova. On some spectral properties of a class of degenerate elliptic differential operators. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 31-50. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a2/

[1] Boimatov K. Kh., “Matrix differential operators generated by noncoercive bilinear forms”, Dokl. Math., 50:3 (1995), 351–359 | MR | Zbl

[2] Boimatov K. Kh., “The generalized Dirichlet problem for systems of second-order differential equations”, Dokl. Math., 46:3 (1993), 403–409 | MR | MR

[3] Boimatov K. Kh., “The generalized Dirichlet problem associated with a noncoercive bilinear form”, Dokl. Math., 47:3 (1993), 455–463 | MR | MR

[4] Boimatov K. Kh. and Seddiki K., “Boundary value problems for systems of ordinary differential equations associated with noncoercive forms”, Dokl. Akad. Nauk, 353:3 (1997), 295–297 | MR | Zbl

[5] Boimatov K. Kh. and Seddiki K., “Some spectral properties of ordinary differential operators generated by noncoercive forms”, Dokl. Akad. Nauk, 352:4 (1997), 439–442 | MR

[6] Iskhokov S. A., “On the smoothness of solutions of the generalized Dirichlet problem and the eigenvalue problem for differential operators generated by noncoercive bilinear forms”, Dokl. Math., 51:3 (1995), 323–325 | MR | MR | Zbl

[7] Iskhokov S. A., “On the smoothness of the solution of degenerate differential equations”, Differ. Uravn., 31:4 (1995), 594–606 | MR | Zbl

[8] Iskhokov S. A., “The variational Dirichlet problem for degenerate elliptic equations in a halfspace”, Dokl. Math., 52:3 (1995), 356–359 | MR | MR | Zbl

[9] Boimatov K. Kh. and Iskhokov S. A., “On solvability and smoothness of a solution of the variational Dirichlet problem associated with a noncoercive bilinear form”, Tr. Mat. Inst. Steklova, 214:3 (1996), 101–127 | MR

[10] Boimatov K. Kh., “Some spectral properties of matrix differential operators that are far from selfadjoint”, Funct. Anal. Appl., 29:3 (1995), 191–193 | DOI | MR | Zbl

[11] Boimatov K. Kh., “On the Abel basis property of the system of root vector-functions of degenerate elliptic differential operators with singular matrix coefficients”, Sib. Math. J., 47:1 (2006), 35–44 | DOI | MR | Zbl

[12] Gadoev M. G., “Spectral asymptotics of nonselfadjoint degenerate elliptic operators with singular matrix coefficients on an interval”, Ufa Math. J., 3:3 (2011), 26–53 | MR | Zbl

[13] Gadoev M. G. and Iskhokov S. A., “Spectral properties of degenerate elliptic operators with matrix coefficients”, Ufa Math. J., 5:4 (2013), 37–48 | DOI | MR

[14] Gadoev M. G. and Konobulov S. I., “Coercive solvability of elliptic operators in Banach spaces”, Sib. Zh. Ind. Mat., 6:2 (2003), 26–30 | MR | Zbl

[15] Gadoev M. G., “Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval”, Sib. Zh. Ind. Mat., 9:2 (2006), 31–43 | Zbl

[16] Iskhokov S. A., “Garding’s inequality for elliptic operators with degeneracy”, Mat. Notes, 87:1 (2010), 189–203 | DOI | DOI | MR | Zbl

[17] Gadoev M. G. and Yakushev I. A., “Variational Dirichlet problem for a class of elliptic equations with degeneracy”, Mat. Zamet. YaGU, 18:1 (2011), 25–35 | Zbl

[18] Iskhokov S. A., Gadoev M. G., and Yakushev I. A., “Garding’s inequality for higher order elliptic operators with nonpower degeneration”, Dokl. Math., 85:2 (2012), 215–218 | DOI | MR | Zbl

[19] Iskhokov S. A. and Nematulloev O. A., “On solvability of the homogeneous variational Dirichlet problem for degenerate elliptic operators in a bounded domain”, Dokl. Akad. Nauk Resp. Tadzh., 55:8 (2012), 617–621

[20] Gadoev M. G. and Konstantinova T. P., “Solvability of the Dirichlet variational problem for a class of degenerate elliptic operators”, Yak. Math. J., 21:2 (2014), 6–18 | Zbl

[21] . Iskhokov S. A. Gadoev M. G., and Konstantinova T. P., “Variational Dirichlet problem for degenerate elliptic operators generated by noncoercive forms”, Dokl. Math., 258:3 (2015), 255–258 | DOI | DOI | MR | Zbl

[22] Triebel H., Interpolation theory, function spaces, differential operators, Veb Deutscher Verlag Der Wissenschaften, Berlin | MR | MR

[23] Egorov I. E., Pyatkov S. G., and Popov S. V., Nonclassical operator-differential equations, Nauka, Novosibirsk, 2000 | MR

[24] Egorov I. E. and Gadoev M. G., $C_0$-semigrops and spectral properties of elliptic operators, Nauka, Novosibirsk, 2013 | MR

[25] Nikol’skii S. M., Lizorkin P. I., and Miroshin N. V., “Weighted function spaces and their applications to the investigation of boundary value problems for degenerate elliptic equations”, Soviet Math. (Iz. VUZ), 32:8 (1988), 1–40 | MR | Zbl

[26] Krasnosel’skii M. A., Zabreyko P. P., Pustylnik E. M., and Sobolevski P. E., Integral operators in spaces of summable functions, Springer-Verlag, Berlin, 1976 | MR | MR

[27] Boimatov K. Kh., “Eigenvalues of elliptic differential operators in limit-cylindrical domains”, Soviet Math. Dokl., 40:2 (1990), 269–272 | MR | MR

[28] Kato T., Perturbation theory for linear operators, 2nd ed., Springer-Verl., Berlin, 1995 | MR | MR | Zbl

[29] Boimatov K. Kh., “On the denseness of the compactly supported functions in weighted spaces”, Soviet Math. Dokl., 40:6 (1990), 225–228 | MR

[30] Lizorkin P. I., “On the theory of degenerate elliptic equations”, Proc. Steklov Inst. Math., 172 (1987), 257–274 | MR | Zbl | Zbl