On some problem for a loaded pseudoparabolic equation of the third order
Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 19-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study solvability of a non-local problem with integral condition for the loaded pseudoparabolic equation of the third order. The existence and uniqueness of the classical solution of the considered problem is proved by Riemann's method.
Keywords: loaded equation, Riemann function
Mots-clés : non-local condition, pseudoparabolic equation.
@article{SVFU_2016_23_2_a1,
     author = {O. S. Zikirov and D. K. Kholikov},
     title = {On some problem for a loaded pseudoparabolic equation of the third order},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {19--30},
     year = {2016},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a1/}
}
TY  - JOUR
AU  - O. S. Zikirov
AU  - D. K. Kholikov
TI  - On some problem for a loaded pseudoparabolic equation of the third order
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 19
EP  - 30
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a1/
LA  - ru
ID  - SVFU_2016_23_2_a1
ER  - 
%0 Journal Article
%A O. S. Zikirov
%A D. K. Kholikov
%T On some problem for a loaded pseudoparabolic equation of the third order
%J Matematičeskie zametki SVFU
%D 2016
%P 19-30
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a1/
%G ru
%F SVFU_2016_23_2_a1
O. S. Zikirov; D. K. Kholikov. On some problem for a loaded pseudoparabolic equation of the third order. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 19-30. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a1/

[1] Nakhushev A. M., Offset problems for partial differential equations, Nauka, Moscow, 2006

[2] Dzhenaliev M. T., To the theory of linear boundary value problems for loaded differential equations, Inst. Theor. Appl. Math., Almaty, 1995

[3] Kozhanov A. I. and Pul'kina L. S., “On solvability of boundary value problems with nonlocal and boundary conditions of integral type for multidimensional hyperbolic equations”, Differ. Uravn., 42:9 (2006), 1166–1179 | MR | Zbl

[4] Barenblatt G. N., Zheltov Yu. P., and Kochina I. N., “About the main ideas of the theory of filtration of homogeneous liquids in fissured rocks”, Prikl. Mat. Mekh., 24:3 (1960), 540–543 | Zbl

[5] Dzetsker E. S., “The equation of motion of groundwater with a free surface in the multilayered media”, Dokl. Akad. Nauk, 220:3 (1975), 540–543

[6] Chudnovskiy A. F., Thermophysics of Soils, Nauka, Moscow, 1976

[7] Beshtokov M. Kh., “Riemann method for the solution of nonlocal boundary value problems for pseudoparabolic equations of the third order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauk, 2013, no. 4, 15–24 | DOI

[8] Shkhanukov M. Kh., “On some boundary value problems for third order equations arising in the modeling of fluid filtration in porous media”, Differ. Uravn., 18:4 (1982), 689–699 | MR | Zbl

[9] Soldatov A. P. and Shkhanukov M. Kh., “The boundary value problem with the general nonlocal A. A. Samarskii condition for the pseudoparabolic equations of higher order”, Dokl. Acad. Nauk, 297:3 (1987), 547–552

[10] Zhegalov V. I. and Mironov A. N., Differential equations with higher derivatives, Kazan. Mat. Obshchestvo, Kazan, 2001

[11] Kozhanov A. I., “On one nonlocal boundary value problem with variable coefficients for the heat and Aller equations”, Differ. Uravn., 40:6 (2004), 763–774 | MR | Zbl

[12] Dzhohadze O. M., “The influence of younger members on the correctness of the statement of characteristic problems for hyperbolic equations of the third order”, Mat. Zametki, 74:4 (2003), 517–528 | DOI | MR | Zbl