On some inverse problems of determining boundary regimes
Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the inverse problem of determining unknown functions occurring in boundary conditions together with the solution to the initial-boundary value problem for a second-order parabolic equation. The overdetermination conditions are integrals of the solution with weight. The existence and uniqueness theorem for solutions to this inverse problem is established.
Keywords: inverse problem, boundary and initial conditions, Sobolev space, existence and uniqueness theorem, solvability.
Mots-clés : parabolic equation
@article{SVFU_2016_23_2_a0,
     author = {M. A. Verzhbitskii and S. G. Pyatkov},
     title = {On some inverse problems of determining boundary regimes},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--18},
     year = {2016},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a0/}
}
TY  - JOUR
AU  - M. A. Verzhbitskii
AU  - S. G. Pyatkov
TI  - On some inverse problems of determining boundary regimes
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 3
EP  - 18
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a0/
LA  - ru
ID  - SVFU_2016_23_2_a0
ER  - 
%0 Journal Article
%A M. A. Verzhbitskii
%A S. G. Pyatkov
%T On some inverse problems of determining boundary regimes
%J Matematičeskie zametki SVFU
%D 2016
%P 3-18
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a0/
%G ru
%F SVFU_2016_23_2_a0
M. A. Verzhbitskii; S. G. Pyatkov. On some inverse problems of determining boundary regimes. Matematičeskie zametki SVFU, Tome 23 (2016) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/SVFU_2016_23_2_a0/

[1] Alifanov O. M., Artyukhov E. A., and Nenarokomov A. V., Inverse problems of complicated heat exchange, Yanus-K, Moscow, 2009

[2] Ozisik M. N., Orlando H. A. B., Inverse heat transfer, Taylor Francis, New York, 2000 | MR

[3] Kostin A. B. and Prilepko A. I., Differ. Equ., 32:1 (1996), 113–122 | MR | Zbl

[4] Borukhov V. T. and Korsyuk V. I., “Application of nonclassical boundary value problems for the reconstruction of boundary regimes of transfer processes”, Vestn. Beloruss. Gos. Univ., Ser. 1, Fiz. Mat. Inform., 1998, no. 3, 54–57

[5] Tryanin A. P., “Determination of heat-transfer coefficients at the inlet into a porous body and inside it by solving the inverse problem”, Inzh.-Fiz. Zh., 52:3 (1987), 469–475

[6] Borukhov V. T., Vabishevich P. N., Korsyuk V. I., “Reduction of a class of inverse heatconduction problems to direct initial-boundary value problems”, J. Eng. Phys. Thermophys., 73:4 (2000), 730–734

[7] Korotki\v{i} A. I. and Kovtunov D. A., “Reconstruction of boundary regimes in the inverse problem of thermal convection of an incompressible fluid”, Tr. Inst. Mat. Mekh. DVO AN, 12 (2006), 88–97

[8] Abylkairov U. U., ““An inverse integral observation problem for a general parabolic equation”, Mat. Zh. Almaty, 3:4 (2003), 5–12 | MR | Zbl

[9] Abylkairov U. U., Abiev A. A., and A\v{i}tzhanov S. E., “An inverse problem for the heat conduction system”, Theory and numerical methods of solving inverse and ill-posed problems. Abstracts, Youth Inter. School-Conf. (Novosibirsk, August 10-20), Inst. Math. SB RAS, 2009, 10–11

[10] Kozhanov A. I., “Linear inverse problems for some classes of nonlinear nonstationary equations”, Sib. Elektron. Mat. Izv., 12 (2015), 264–275

[11] Iskenderov A. D. and Akhundov A. Ya., “Inverse problem for a linear system of parabolic equations”, Dokl. Math., 79:1 (2009), 73–75 | DOI | MR | Zbl

[12] Ismailov M. I., Kanca F., “The inverse problem of finding the time-dependent coefficient of heat equation from integral overdetermination condition data”, Inverse Probl. Sci. Eng., 20:24 (2012), 463–476 | MR | Zbl

[13] Li J., Xu Y., “An inverse coefficient problem with nonlinear parabolic equation”, J. Appl. Math. Comput, 34. (2010), 195–206 | DOI | MR | Zbl

[14] Kerimov N. B., Ismailov M. I., “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. Math. Anal. Appl, 396:2 (2012), 546–554 | DOI | MR | Zbl

[15] Kozhanov A. I., “Parabolic equations with a time-dependent unknown coeffcient”, Comput. Math. Math. Phys., 45:12 (2005), 2085–2101 | MR | Zbl

[16] Pyatkov S. G. and Safonov E. I., “Determination of the Source Function in the Mathematical Models of Convection-Diffusion”, Yak. Math. Journal, 21:2 (2014), 107–118 | Zbl

[17] Kriksin Yu. A., Plyushchev S. N., Samarskaya E. A., and Tishkin V. F., “An inverse problem of recovering the source density for the convection-diffusion equation”, Mat. Model., 7:11 (1995), 95–108 | MR | Zbl

[18] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, Inc., New York, 1999 | MR

[19] Ivanchov M., Inverse problems for equations of parabolic type, Math. Stud. Monogr. Ser., 10, VNTL Publ., Lviv, 2003 | MR | Zbl

[20] Triebel H., Interpolation theory, function spaces, differential operators, Veb Deutscher Verlag Der Wissenschaften, Berlin | MR | MR

[21] Ladyzhenskaya O. A., Solonnikov V. A., and Uraltseva N. N.,, Linear and quasilinear parabolic equations, Nauka, Moscow, 1967 | MR

[22] Denk R., Hieber M., Pruss J., “Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z ., 257:1 (2007), 193–224 | DOI | MR | Zbl

[23] Grisvard P., “Équations différentielles abstraites”, Ann. Sci. éc. Norm. Supér., IV Sér, 2 (1969), 311–395 | MR | Zbl

[24] Besov O. V., Il’in V. P., and Nikol’ski\v{i} S. M., Integral representations of functions and embedding theorems, Nauka, Moscow, 1975 | MR