On convergence of $D$-limits
Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 108-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some statements about the convergence of $D$-limits are proved.
Keywords: finally compact topological space, countably complete ultrafilter.
@article{SVFU_2016_23_1_a9,
     author = {P. V. Chernikov},
     title = {On convergence of $D$-limits},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {108--111},
     year = {2016},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a9/}
}
TY  - JOUR
AU  - P. V. Chernikov
TI  - On convergence of $D$-limits
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 108
EP  - 111
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a9/
LA  - ru
ID  - SVFU_2016_23_1_a9
ER  - 
%0 Journal Article
%A P. V. Chernikov
%T On convergence of $D$-limits
%J Matematičeskie zametki SVFU
%D 2016
%P 108-111
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a9/
%G ru
%F SVFU_2016_23_1_a9
P. V. Chernikov. On convergence of $D$-limits. Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 108-111. http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a9/

[1] Chernikov P. V., “Some properties of elementary theories and spaces of models”, Mat. Zamet. YaGU, 20:1 (2013), 153–159 | MR | Zbl

[2] Chang C. C. and Keisler H. J., Continuous Model Theory, Prinston Univ. Press, Prinston, 1966 | MR | MR | Zbl

[3] Engelking R., General Topology, Warszawa, 1977 | MR | MR

[4] Chernikov P. V., “On elementary theories, model spaces and D-limits”, Mat. Zamet. YaGU, 18:1 (2011), 155–158 | Zbl

[5] Edwards R. D., Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York, Chicago, San Francisco, Toronto, and London, 1965 | MR | Zbl